Как сделать цифровой вольтметр своими руками?

Простой цифровой вольтметр от 0 до 30 вольт на 3 сегмента

Хочу поделиться опытом изготовления цифрового вольтметра на основе микропроцессора РІС16F676. Делаю его для домашнего блока питания. Поскольку корпус не большой — разогнаться на особые «навороты» не получается. Места на стрелочные индикаторы недостаточно, да и маленькие вольтметры, как правило, военного образца либо не градуированы на необходимые напряжения либо не имеют нормального обзора шкалы.

Придумать все самому не получается – пока знаний программирования микропроцессоров не достаточно (только учусь), а отставать не хочется. Серфинг Интернета дал несколько разных вариантов как по сложности схемотехники и выполняемых функций, так и самих процессоров. Анализ ситуации на местных радиорынках и трезвый подход (покупать то что по карману; делать то, что реально сможешь, а процесс изготовления да время настройки не затянется на неограниченное время) остановил мой выбор на схеме вольтметра описанного на www.CoolCircuit.com.

Купив процессоры да индикаторы с общим анодом (делаю сразу два вольтметра на двухполярный блок питания) начал разводку печатной платы. Но далеко не «зашел» ибо оказалось что автор неверно указал распиновку процессора. Потраченные деньги заставили успокоиться и мысли направить в правильное русло – скачал даташит на этот РІС и начал разбираться что куда. Усилия не пропали и в результате все работает как надо. Дабы граждане, желающие использовать в своих разработках указанный цифровой вольтметр, не повторяли мои ошибки, решил поделиться своими мыслями.

Итак, нижеприведенная принципиальная схема уже исправлена . Прошивка осталась родная (main.HEX — приобщаю).

Те, кто процессоры «держит в руках часто» дальше могут не читать, а остальным, особенно кто в первый раз, расскажу, как все сделать хоть и не оптимально (да простят мне профессионалы стиль изложения), но в итоге правильно.
Итак, для справки: семейство процессоров РІC на 14 ножек имеют разную распиновку поэтому нужно проверить подходит ли имеющийся у Вас программатор с панельками под этот чип. Обратите внимание именно на 8-пиновую панельку, как правило, именно она и подходит, а крайние справа выводы просто висят. Я пользовался обычным программатором «PonyProg» .

Следует учесть при пограммировании РІС важно не затереть калибровочную константу внутреннего генератора чипа ибо внешний кварц здесь не используется. Она записана в последней ячейке (адресе) памяти процессора. Если использовать IcProg, выбрав тип МК, то в окне – «Адрес программного кода» в последней строке обозначенной адресом — 03F8 крайние справа четыре символа и есть указанная индивидуальная константа. (Если микросхема новая и ни разу не программированная то после кучи символов 3FFF – последним будет что то типа 3454 – это самое то).

Чтобы расчет показаний вольтметра соответствовал истине, все сделать правильно и понять процесс происходящего предлагаю хоть не оптимальный но надеюсь понятный алгоритм:

— перед программированием МК, необходимо в IcProg сначала дать команду «Читать все» и посмотреть на вышеуказанную ячейку памяти – там будет значится индивидуальная константа этого чипа. Ее надо переписать на бумажку ( в памяти не держать!- забудешь).
— загрузить программный файл прошивки МК – с расширением *.hex (в даном случае -«main.hex») и проверить какая константа записана в той же ячейке в данном программном продукте. Если она отличается – поставить курсор и ввести туда данные, ранее записанные на бумажке.
— нажимаем команду программировать — после появившегося вопроса типа: «использовать ли данные осцилятора из файла» – соглашаетесь. Ибо Вы уже проверили, что там то что надо.

Еще раз прошу прощения у тех, кто программирует много и так не делает, но я пытаюсь донести до начинающих информацию о достаточно важном программном элементе данного микропроцессора и не потерять его из-за разных иногда совсем непонятных, а то и необъяснимых потом ситуаций. Особенно если дрожащими от волнения руками воткнул чип в только что сооруженный и впервые соединенный с компом программатор и, волнуясь, нажимаешь кнопку программировать, а оное чудо техники начинает еще и непонятные вопросы задавать – вот тут то все неприятности и начинаются.

Итак, если все этапы пройдены верно, – микросхема МК готова к использованию. Дальше дело техники.
От себя хочу добавить, что транзисторы здесь не критичные – подходят любые р-n-р структуры, в т.ч. советские, в пластмассовом корпусе. Я использовал выпаянные из импортной бытовой техники после проверки на соответствие структуры проводимости. В этом случае присущ еще один нюанс – расположение вывода базы транзистора может быть по середине корпуса или с краю. Для работы схемы это безразлично, нужно только соответственно формировать выводы при пайке. Постоянные резисторы для делителя напряжения – именно указанного номинала. Если найти импортный подстроечный резистор на 50 кОм не удастся, то советского производства желательно взять чуточку больше — 68 кОм, а 47 кОм брать не рекомендую ибо в случае одновременного совпадения пониженных номиналов — потеряется расчетное соотношение сопротивлений делителя напряжения, которое может быть трудно исправить подстоечником.

Как я уже писал у моего блока питания два плеча – поэтому сделал сразу два вольтметра на одной плате, а индикаторы вывел на отдельную плату для экономии места на лицевой панели. Развел под обычные элементы. Файлы с разводкой плат, исходник и hex прилагаются в архиве. У Вас — SMD, то переделать ее не трудно, если надо обращайтесь.

Для тех, кто захочет повторить этот вольтметр и имеет, как у меня, двухполярный блок питания с общей средней точкой — напоминаю о необходимости питания обоих вольтметров от двух отдельных (гальванически разделенных) источников. Скажем — отдельных обмоток сылового трансформатора или, как вариант – импульсный преобразователь, но обязательно с двумя обмотками по 7 Вольт (нестабилизированных ). Для тех, кто будет делать «импульсник»: ток потребления вольтметра от 70 до 100 мА в зависимости от размера и цвета индикатора. Иначе никак ибо на порт МК нельзя подавать отрицательное напряжение.
Если кому понадобится и схема преобразователя, спрашивайте на форуме, я сейчас над этим вопросом работаю.

Архив с нужными даными и печатками в SLayout-5rus:
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

Как сделать цифровой вольтметр своими руками?

У меня в мастерской скопилась целая куча батареек — пальчики и мизинчики, таблетки и кроны. Какие-то использованные, какие-то совсем новые. Чтобы найти рабочие, я собрал простой цифровой вольтметр.

Что понадобится

— микроконтроллер Arduino Uno
— текстовый ЖК экран
— пара резисторов на 10 кОм
— выпрямительный диод
— клемник
— макетная плата
— соединительные провода «папа-папа»

Читайте также  Как выпрямить порог на автомобиле своими руками?

Микроконтроллер Arduino Uno умеет измерять напряжение на контактах для подключения аналоговых устройств. Плата рассчитана на постоянный ток напряжением до 5 вольт, более высокое напряжение может повредить плату. Некоторые батарейки выдают больше, например «Крона» — 9 вольт. Чтобы не повредить плату, добавлю простой делитель напряжения — он позволит справиться с 10 вольтами.

Соберу вольтметр на макетной плате: так можно быстро менять схему, добавлять новые детали и исправлять ошибки. С паяльником это намного труднее.

Шаг первый. Подключаем подсветку экрана

Жидкокристалический экран — это сложное электронное устройство. Кроме дисплея, на борту модуля предусмотрена собственная память, микропроцессор для обработки сигналов и электронные компоненты, которые помогают менять яркость подсветки и контраст символов. Чтобы экран заработал, придётся подключить минимум 12 контактов.

Начнём с самого простого, подсветки экрана. За неё отвечает пара ног: 15 — это плюс, а 16 — минус. На моём экране они расположены справа, но у вашего модуля порядок ножек может быть другим. Проверьте документацию, эти ножки называются LED+ и LED-

Если всё сделали правильно, загорится подсветка экрана.

Можно начинать подключать остальные ножки.

Шаг 2. Подключаем экран

Разобьём подключение на два этапа. Сначала подключим правую группу пинов, затем — левую.

Пойдём справа налево: подключим ножки 1, 2, 3, 4, 5 и 6.

Ножки 1 (GND) и 2 (UCC)отвечают за питание электроники модуля. Подключим их к плюсу и минусу на макетной плате.

Ножка 3 (Uo) отвечает за управление контрастностью. Проще всего просто подключить её к общему минусу, так контрастность будет максимальной.

Ножки 4 (Ao), 5 (R/W) и 6 (E) служат для управления режимами работы экрана. Подключим среднюю к минусу, а остальные к контактам 13 и 12 на Arduino. Звучит запутанно, но разобраться вам поможет схема подключения.

К сожалению пока проверить экран не получится, чтобы вывести хотя бы одну точку, придётся подключить ещё четыре ножки. На моём модуле это левая группа контактов, они пронумерованы с 14 по 11.

Эти контакты отвечают за передачу символов, которые будут выводиться на экран. Внимательно изучите свой модуль и подключите их в таком порядке:
— 14 (DB7) ножку экрана к 8 контакту платы Arduino,
— 13 (DB6) ножку к 9 контакту,
— 12 (DB5) ножку к 10 контакту,
— 11 (DB4) ножку к 11 контакту (наконец-то номера совпали!).

Шаг 2 и ¾. Проверяем подключение

Втыкая дюжину проводов, немудрено ошибиться. Поэтому проверим как работает экран. Для этого загрузим в плату простую программу. Как это сделать, я рассказывал в самом первом проекте. Если забыли, посмотрите статью о бесконтактном санитайзере.

Скопируйте код и у вас на вашем экране появится мотивирующая записка от нашего журнала.

Шаг три. Добавляем делитель напряжения и защитный диод

Напряжение пальчиковых и мизинчиковых батареек мы можем измерять подключаясь к контактам Arduino, но это чревато двумя проблемами. Плата может сгореть, если:
— попробуем измерить напряжение на большой батарейке, например на «Кроне» или «Планете»,
— перепутаем полярность, подключим минус батарейки к контакту платы.

С первой проблемой справится простой делитель напряжения. Достаточно пары 10 килоомных сопротивлений. Если соединить их последовательно, они разделят напряжение пополам. Поэтому к плате можно будет подключать батарейки с напряжением до 10 вольт.

Минусовой провод нашего вольтметра подключим через выпрямительный диод. Он работает как простой клапан, пропускает ток только в одном направлении. Если кто-то перепутает полярность, цепь не замкнётся и плата останется цела и невредима. Главное, не перепутайте полярность самого диода: минус на нём обозначен полоской вокруг корпуса.

Теперь загрузите в плату новую программу. Код не сложный, каждая строка прокомментирована, поэтому вы легко разберётесь в коде.

Вот и всё. Всего за десять минут мы собрали функциональный прибор — настоящий цифровой вольтметр. Теперь вы сможете навести порядок в ящике с батарейками. Удачи!

МИНИ ЦИФРОВЫЕ ВОЛЬТМЕТРЫ

Ещё одна маленькая победа Китай-прома над отечественным радиолюбительством произошла в области А/В-метров. Уже несколько лет как стали очень популярны мини LED индикаторы напряжения. Их уже можно увидеть во многих самодельных конструкциях и делание цифрового вольтметра / амперметра на микроконтроллере с нуля уже скорее проходит по категории «мазохизм», если конечно не требуются особые свойства или точность. Значит имеет смысл взглянуть на такие модули по-пристальнее, выбрав самые маленькие из них трех разных цветов для теста.

Модули вольтметры цифровые

Большим преимуществом блоков является относительно низкая цена и отсутствие напряжения питания, они питаются от напряжения которое одновременно измеряют. Производитель дает диапазон напряжения 2,6 — 30 В. Для начала протестируем их при разных значениях напряжения. Питание от преобразователя и литий-ионных аккумуляторов. Сравнивать будем показания с измерителем UNI-T UT210E, а также с ANENG. Модули имеют на плате небольшой потенциометр для коррекции показаний.

Бывает что настройка модуля при низком напряжении требует и коррекции на верхних рабочих диапазонах этого модуля. Для повышения точности тем потенциометром можете откалибровать показания по эталонному прибору и после процедуры рекомендуем капнуть лак для ногтей, чтобы обездвижить его. После калибровки они станут достаточно точные.

Точность этих индикаторов будет приемлемой во многих устройствах, особенно учитывая низкую цену этих модулей (можно купить за менее 100 рублей). Индикаторы автоматически переключают диапазон — после превышения значения 9,99 В отображаются только десятичные части, то есть одна цифра после запятой.

Подключение минивольтметров

Для некоторых отсутствие отдельного блока питания является недостатком. Но если есть отдельный источник питания, то можете подключить его отдельно. Еще одним недостатком является низкое внутреннее сопротивление, которое ограничивает использование модуля только для источников питания, зарядок и аналогичных схем. Другим недостатком является ограниченный диапазон измерения снизу.

Это измерительное устройство в схемном плане ничем не отличается от трехпроводного исполнения, для третьего провода (измерительного) имеется дополнительное поле для пайки. Достаточно снять перемычку.

Преимущество двухпроводной системы заключается в более низкой цене, которая компенсирует многие проблемы этого модуля.

Количество отображаемых сегментов увеличивает потребление тока, иногда эти колебания могут проявляться в показаниях точности.

Простейший вольтметр является двухпроводным — он питается от напряжения которое в то же время измеряет, то есть не нужен дополнительный источник питания для индикатора. И главное — после использования другого источника питания можем измерить напряжение от 0 В.

Мини вольт-ампер метры

Более дорогим аналогом является индикаторы, одновременно показывающие напряжение и ток. Они чуть отличаются схемой подключения и наличием двух резисторов коррекции показаний на плате.

Форум по обсуждению материала МИНИ ЦИФРОВЫЕ ВОЛЬТМЕТРЫ

Классический фонарик со встроенным зарядным устройством можно неплохо улучшить, добавив пару микросхем и 18650 АКБ.

Электрофорез «Поток-1» — схема, инструкция и самостоятельное изготовление медицинского прибора.

Сборник из 10 конструкций и схем приставок к цифровым мультиметрам, расширяющих функционал измерительных приборов.

Схемы самодельных цифровых вольтметра и амперметра (СА3162, КР514ИД2)

Рассмотрены не сложные схемы цифровых вольтметра и амперметра, построенных без использования микроконтроллеров на микросхемах СА3162, КР514ИД2. Обычно, у хорошего лабораторного блока питания есть встроенные приборы, — вольтметр и амперметр. Вольтметр позволяет точно установить выходное напряжение, а амперметр покажет ток через нагрузку.

Читайте также  Как установить сигнализацию на приору своими руками?

В старых лабораторных блоках питания были стрелочные индикаторы, но сейчас должны быть цифровые. Сейчас радиолюбители чаще всего делают такие приборы на основе микроконтроллера или микросхем АЦП вроде КР572ПВ2, КР572ПВ5.

Микросхема СА3162Е

Но существуют и другие микросхемы аналогичного действия. Например, есть микросхема СА3162Е, которая предназначена для создания измерителя аналоговой величины с отображением результата на трехразрядном цифровом индикаторе.

Микросхема СА3162Е представляет собой АЦП с максимальным входным напряжением 999 mV (при этом показания «999») и логической схемой, которая выдает сведения о результате измерения в виде трех поочередно меняющихся двоично-десятичных четырехразрядных кодов на параллельном выходе и трех выходах для опроса разрядов схемы динамической индикации.

Чтобы получить законченный прибор нужно добавить дешифратор для работы на семисегментный индикатор и сборку из трех семисегментных индикаторов, включенных в матрицу для динамической индикации, а так же, трех управляющих ключей.

Тип индикаторов может быть любым, -светодиодные, люминесцентные, газоразрядные, жидкокристаллические, все зависит от схемы выходного узла на дешифраторе и ключах. Здесь используется светодиодная индикация на табло из трех семисегментных индикаторов с общими анодами.

Индикаторые включены по схеме динамической матрицы, то есть, все их сегментные (катодные) выводы включены параллельно. А для опроса, то есть, последовательного переключения, используются общие анодные выводы.

Принципиальная схема вольтметра

Теперь ближе к схеме. На рисунке 1 показана схема вольтметра, измеряющего напряжение от 0 до 100V (0. 99,9V). Измеряемое напряжение поступает на выводы 11-10 (вход) микросхемы D1 через делитель на резисторах R1-R3.

Конденсатор C3 исключает влияние помех на результат измерения. Резистором R4 устанавливают показания прибора на ноль, при отсутствии входного напряжения А резистором R5 выставляют предел измерения так чтобы результат измерения соответствовал реальному, то есть, можно сказать, им калибруют прибор.

Рис. 1. Принципиальная схема цифрового вольтметра до 100В на микросхемах СА3162, КР514ИД2.

Теперь о выходах микросхемы. Логическая часть СА3162Е построена по логике ТТЛ, а выходы еще и с открытыми коллекторами. На выходах «1-2-4-8» формируется двоичнодесятичный код, который периодически сменяется, обеспечивая последовательную передачу данных о трех разрядах результата измерения.

Если используется дешифратор ТТЛ, как, например, КР514ИД2, то его входы непосредственно подключаются к данным входам D1. Если же будет применен дешифратор логики КМОП или МОП, то его входы будет необходимо подтянуть к плюсу при помощи резисторов. Это нужно будет сделать, например, если вместо КР514ИД2 будет использован дешифратор К176ИД2 или CD4056.

Выходы дешифратора D2 через токоограничивающие резисторы R7-R13 подключены к сегментным выводам светодиодных индикаторов Н1-НЗ. Одноименные сегментные выводы всех трех индикаторов соединены вместе. Для опроса индикаторов используются транзисторные ключи VT1-VT3, на базы которых подаются команды с выходов Н1-НЗ микросхемы D1.

Эти выводы тоже сделаны по схеме с открытым коллектором. Активный ноль, поэтому используются транзисторы структуры р-п-р.

Принципиальная схема амперметра

Схема амперметра показана на рисунке 2. Схема практически такая же, за исключением входа. Здесь вместо делителя стоит шунт на пятиваттном резисторе R2 сопротивлением 0,1 От. При таком шунте прибор измеряет ток до 10А (0. 9.99А). Установка на ноль и калибровка, как и в первой схеме, осуществляется резисторами R4 и R5.

Рис. 2. Принципиальная схема цифрового амперметра до 10А и более на микросхемах СА3162, КР514ИД2.

Выбрав другие делители и шунты можно задать другие пределы измерения, например, 0. 9.99V, 0. 999mA, 0. 999V, 0. 99.9А, это зависит от выходных параметров того лабораторного блока питания, в который будут установлены эти индикаторы. Так же, на основе данных схем можно сделать и самостоятельный измерительный прибор для измерения напряжения и тока (настольный мультиметр).

При этом нужно учесть, что даже используя жидкокристаллические индикаторы прибор будет потреблять существенный ток, так как логическая часть СА3162Е построена по ТТЛ-логике. Поэтому, хороший прибор с автономным питанием вряд ли получится. А вот автомобильный вольтметр (рис.4) выйдет неплохой.

Питаются приборы постоянным стабилизированным напряжением 5V. В источнике питания, в который будут они установлены, необходимо предусмотреть наличие такого напряжения при токе не ниже 150mA.

Подключение прибора

На рисунке 3 показана схема подключения измерителей в лабораторном источнике.

Рис. 3. Схема подключения измерителей в лабораторном источнике.

Рис.4. Самодельный автомобильный вольтметр на микросхемах.

Детали

Пожалуй, самое труднодоставаемое — это микросхемы СА3162Е. Из аналогов мне известна только NTE2054. Возможно есть и другие аналоги, о которых мне не известно.

С остальным значительно проще. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Например, если индикаторы будут с общим катодом, то нужно КР514ИД2 заменить на КР514ИД1 (цоколевка такая же), а транзисторы VТ1-VT3 перетащить вниз, подсоединив их коллектора к минусу питания, а эмиттеры к общим катодам индикаторов. Можно использовать дешифраторы КМОП-логики, подтянув их входы к плюсу питания при помощи резисторов.

Налаживание

В общем-то оно совсем несложное. Начнем с вольтметра. Сначала замкнем между собой выводы 10 и 11 D1, и подстройкой R4 выставим нулевые показания. Затем, убираем перемычку, замыкающую выводы 11-10 и подключаем к клеммам «нагрузка» образцовый прибор, например, мультиметр.

Регулируя напряжение на выходе источника, резистором R5 настраиваем калибровку прибора так, чтобы его показания совпадали с показаниями мультиметра. Далее, налаживаем амперметр. Сначала, не подключая нагрузку, регулировкой резистора R5 устанавливаем его показания на ноль. Теперь потребуется постоянный резистор сопротивлением 20 От и мощностью не ниже 5W.

Устанавливаем на блоке питания напряжение 10V и подключаем этот резистор в качестве нагрузки. Подстраиваем R5 так чтобы амперметр показал 0,50 А.

Можно выполнить калибровку и по образцовому амперметру, но мне показалось удобнее с резистором, хотя конечно на качество калибровки очень влияет погрешность сопротивления резистора.

По этой же схеме можно сделать и автомобильный вольтметр. Схема такого прибора показана на рисунке 4. Схема от показанной на рисунке 1 отличается только входом и схемой питания. Этот прибор теперь питается от измеряемого напряжения, то есть, измеряет напряжение, поступающее на него как питающее.

Напряжение от бортовой сети автомобиля через делитель R1-R2-R3 поступает на вход микросхемы D1. Параметры этого делителя такие же как в схеме на рисунке 1, то есть для измерения в пределах 0. 99.9V.

Но в автомобиле напряжение редко бывает более 18V (больше 14,5V уже неисправность). И редко опускается ниже 6V, разве только падает до нуля при полном отключении. Поэтому прибор реально работает в интервале 7. 16V. Питание 5V формируется из того же источника, с помощью стабилизатора А1.

Как сделать простой вольтметр своими руками – схемы и рекомендации

Ситуации, когда под рукой должен находиться вольтметр, встречаются достаточно часто. Для этого нет необходимости использовать заводской сложный прибор. Изготовить простенький вольтметр своими руками – не проблема, потому что состоит он из двух элементов: стрелочный измерительный блок и резистор. Правда, необходимо отметить, что пригодность вольтметра определяется его входным сопротивлением, которое состоит из сопротивлений его элементов.

Читайте также  Как сделать подогрев зеркал своими руками?

Но необходимо учитывать тот факт, что резисторы есть разные с разными номиналами, а это говорит о том, что от установленного резистора будет зависеть входное сопротивление. То есть, подобрав правильно резистор, можно сделать вольтметр под замеры определенных уровней напряжений сетей. Сам же измерительный прибор чаще оценивается по показателю – относительное входное сопротивления, приходящееся на один вольт напряжения, его единица измерения – кОм/В.

То есть, получается так, что входное сопротивления на разных измеряемых участках разное, а относительная величина – показатель постоянный. К тому же, чем меньше отклоняется стрелка измерительного блока, тем больше относительная величина, а, значит, точнее будут измерения.

Прибор для измерения нескольких пределов

Кто не раз сталкивался с транзисторными конструкциями и схемами знает, что очень часто вольтметром приходится замерять цепи с напряжением от десятков долей одного вольта до сотен вольт. Простой приборчик, изготовленный своими руками, с одним резистором это не осилит, поэтому в схему придется подключить несколько элементов с разным сопротивлением. Чтобы вы поняли, о чем идет речь, предлагаем ознакомиться со схемой, расположенной снизу:

На ней показано, что в схеме установлено четыре резистора, каждый из которых отвечает за свой диапазон измерений:

  1. От 0 вольт до единицы.
  2. От 0 вольт до 10В.
  3. От 0 В до 100 вольт.
  4. От 0 до 1000 В.

Номинал каждого резистора поддается подсчету, который проводится на основе закона Ома. Здесь используется следующая формула:

  • Rп – это сопротивление измерительного блока, возьмем, к примеру. 500 Ом;
  • Uп – это максимальное напряжение измеряемого предела;
  • Iи – это сила тока, при которой стрелка отклоняется до конца шкалы, в нашем случае – 0,0005 ампер.

Для несложного вольтметра из китайского амперметра можно выбрать следующие резисторы:

  • для первого предела – 1,5 кОм;
  • для второго – 19,5 кОм;
  • для третьего – 199,5;
  • для четвертого – 1999,5.

А вот относительная величина сопротивления этого прибора будет равна 2 кОм/В. Конечно, расчетные номиналы не совпадают со стандартными, поэтому резисторы придется подбирать близкими по значению. Далее проводится финишная подгонка, при которой производится градуировка самого прибора.

Как переделать вольтметр постоянного напряжения в переменное

Показанная на рисунке №1 схема – это вольтметр постоянного тока. Чтобы его сделать переменным или, как говорят специалисты, пульсирующим, необходимо в конструкцию установить выпрямитель, с помощью которого постоянное напряжение преобразуется в переменное. На рисунке №2 вольтметр переменного тока показан схематически.

Данная схема работает так:

  • когда на левом зажиме находится положительная полуволна, то открывается диод D1, D2 в этом случае закрыт;
  • напряжение проходит через амперметр к правому зажиму;
  • когда положительная полуволна находится на правом конце, то D1 закрывается, и напряжение через амперметр не проходит.

В схему обязательно добавляется резистор Rд, сопротивление которого рассчитывается точно так же, как и остальные элементы. Правда, его расчетное значение делится на коэффициент, равный 2,5-3. Это в том случае, если в вольтметр устанавливается однополупериодный выпрямитель. Если используется двухполупериодный выпрямитель, то значение сопротивления делится на коэффициент: 1,25-1,5. Кстати, схема последнего изображена на рисунке №3.

Как правильно подключить вольтметр

Тот, кто не знает, но хочет проверить напряжение на каком-то участке электрической сети, должен задаться вопросом – как подключить вольтметр? Это на самом деле серьезный вопрос, в ответе которого лежит простое требование – подключение вольтметра необходимо проводить только параллельно нагрузке. Если будет произведено последовательное подключение, то сам прибор просто выйдет из строя, и вас может ударить током.

Все дело в том, что при таком соединении уменьшается сила тока, действующая на сам измерительный прибор. При этом сопротивлении его не меняется, то есть, остается большим. Кстати, никогда не путайте вольтметр с амперметром. Последний подключается к цепи последовательно, чтобы снизить показатель сопротивления до минимума.

И последний вопрос темы – как пользоваться вольтметром, изготовленным самостоятельно. Итак, в вашем приборе два щупа. Один подключается к нулевому контуру, второй к фазе. Так же можно проверить напряжение через розетку, предварительно определив, к какому гнезду запитан ноль, а к какому фаза. Или соединяете параллельно прибор к измеряемому участку. Стрелка измерительного блока покажет величину напряжения в сети. Вот так пользуются этим самодельным измерительным прибором.