Из каких механизмов и систем состоит двигатель?

Основные механизмы и системы двигателя

ДВС состоит из кривошипно-шатунного механизма, механизма газораспределения и пяти систем: питания, зажигания, смазки, охлаждения и пуска.

Кривошипно-шатунный механизм предназначен для восприятия давления газов и преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала

Механизм газораспределения служит для выполнения циклов ДВС

Система питания предназначена для приготовления и подачи в цилиндр двигателя в процессе впуска горючей смеси нужных качества и количества или порций распыленного топлива в определенный момент.

Система зажигания служит для принудительного воспламенения рабочей смеси от электрической искры, возникающей между электродами свечи зажигания под действием импульса электрического тока высокого напряжения.

Система смазки служит для непрерывного подвода смазки к узлам трения движущихся деталей.

Система охлаждения предназначена для принудительного отвода теплоты от нагретых деталей. Системы охлаждения бывают жидкостные и воздушные, когда охлаждение деталей осуществляется потоком воздуха.

Система пуска предназначена для быстрого и надежного пуска двигателя.

Рабочие процессы, протекающие в цилиндрах четырехтактного и двухтактного ДВС.

Основные понятия и определения (см. рис. 8)

При перемещении в цилиндре поршень достигает крайних положений , в которых направление его движения меняется. Крайние верхнее и нижнее положения поршня называются соответственно верхняя(в.м.т.) и нижняя(н.м.т.) мертвые точки. И этих точках сила, действующая на поршень не может создавать крутящий момент на коленчатом валу. Расстояние между верхней и нижней мертвыми точками называетсяходом поршня и обозначают S.

Внутренний объем цилиндра при положении поршня в в.м.т. называется объем камеры сгоранияиобозначают Vс . Внутренняя полость цилиндра при положении поршня в н.м.т. называется полным объемом цилиндраиобозначаютVa. Объем, описываемый поршнем при движении его от в.м.т. к н.м.т., называется рабочим объемом цилиндра и обозначают Vh. Рабочий объем цилиндра равен разности между полным объемом цилиндра и объемом камеры сгорания. Vh = Va — Vс

Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатияи обозначают ε . Степень сжатия показывает, во сколько раз уменьшается объем внутренней полости цилиндра при движении поршня от н.м.т. к в.м.т.;

Рис. 8. Схема четырехтактного ДВС

Степень сжатия карбюраторных двигателей обычно в пределах 7-10, а дизельных – 16-22. Степень сжатия влияет на мощность и экономичность двигателя. С увеличением степени сжатия увеличиваются мощность двигателя и его экономичность.

Рабочий цикл четырехтактного двигателя состоит из пяти процессов: впуск, сжатие, сгорание, расширение и выпуск, которые совершаются за. четыре такта (хода поршня) или за два оборота коленчатого вала.

1.6.2. Процесс впуска.

На рис. 12 представлена диаграмма изменения давления газов внутри цилиндра в процессе впуска. По линии ординат показывается давление, а по линии абсцисс – объем внутренней полости цилиндра. Принятые обозначения: т.1- начало открытия впускного клапана; т.2- конец закрытия впускного клапана; т.r— положение поршня в в.м.т. в начале впуска; т.а— положение поршня в н.м.т.;ро— атмосферное давление.

Впуск горючей смеси (смеси паров топлива с воздухом) происходит после выпуска из цилиндра отработавших газов от предыдущего цикла. Впускной клапан открывается с некоторым опережением до в.м.т. (т.1), чтобы получить к моменту прихода поршня в в.м.т. большее проходное сечение у клапана.

Рис. 9. Процесс впуска

Впуск горючей смеси происходит за два этапа. Первый за счет разрежения, создающегося в цилиндре (линия r-a) и второй за счет скоростного напора потока смеси (линия а-2). Впуск смеси заканчивается в момент закрытия впускного клапана т.2.

Процесс впуска или другими словами процесс наполнения цилиндра горючей смесью зависит от ряда факторов, В результате чего действительное количество горючей смеси (воздуха) поступившее в цилиндр за период наполнения не равно тому количеству, которое теоретически могло бы заполнить рабочий объем цилиндра Vh при условиях, при которых свежий заряд находится перед впускным патрубком двигателя (ркк). Эти параметры свежего заряда существенно отличаются от параметров воздуха в окружающей среде роо:

1. — из-за сопротивления воздушного фильтра и трубопроводов рк ро

— вследствие сопротивления во впускном патрубке и в клапанном канале давление свежего заряда в цилиндре ра меньше, чем перед впускным патрубкомра = рк — Δ рв, где Δ рв – сопротивление впускных органов.

2. Такое соотношение между ра и рк сохраняется и в начале сжатия до тех пор пока ра вследствие сжатия не выровняется с рк. Наличие разницы давлений вне и внутри цилиндра используется различными способами для дополнительного ввода в цилиндр свежей смеси, что является способом увеличения общего количества заряда и называется дозарядкой.

3. Воздух или горючая смесь, поступая в цилиндр, нагреваются от его стенок. Кроме того в карбюраторных двигателях горючая смесь подогревается во впускном трубопроводе. Подогрев оценивается ΔТ –разностью температур, это снижает плотность заряда, а следовательно и количество действительно поступившей в цилиндр горючей смеси.

4 .Невозможно удалить полностью из цилиндра в период выпуска все продукты сгорания. Остаток называют остаточные газы. .

Эти факторы, влияющие на наполнение рабочего цилиндра, с свою очередь, зависят от целого комплекса условий конструктивного и эксплу-атационного характера.

Степень наполнения цилиндра горючей смесью ( воздухом) оценивается коэффициентом наполнения

где Gi – количество горючей смеси (воздуха) оставшегося в цилиндре после закрытия впускного клапана;

ρк – плотность горючей смеси ( воздуха) прирк и Тк.

Vh·ρк – количество горючей смеси (воздуха), которое могло бы заполнить цилиндр при давлениирк и температуре Тк.

1.6.3. Процесс сжатияслужит:

— для расширения температурных пределов между которыми протекает рабочий процесс;

-для обеспечения возможности получения максимально достижимой в реальных условиях степени расширения;

— для создания условий, необходимых для возможно лучшего сгорания горючей смеси;

Эти условия обеспечивают эффективное преобразование теплоты в полезную работу.

Рис.11. Процесс сжатия

При внешнем смесеобразовании и воспламенением от искры в процессе сжатия происходит дополнительное перемешивание смеси для повышения однородности ее состава по всему объему. Особенно благоприятные условия в этом отношении создаются, если к концу сжатия в цилиндре сохраняются турбулентное движение сжатой рабочей смеси. Анализ процессов, происходящих в двигателе, показывает, что для увеличения КПД следует стремиться к повышению степени сжатия ε. Однако, степень сжатия должна быть таковой, чтобы температура и давление смеси в конце сжатия не достигли бы значений, при которых могла бы возникнуть детонация или преждевременное воспламенение. В соответствии с этим верхний предел степени сжатия зависит от: свойств топлива; состава смеси; условий теплоотдачи; конструктивных форм камеры сгорания и т.д. Ориентировочные значение степени сжатия: карбюраторный ДВС — 7-10; дизельный — 16-20.

В двигателях с воспламенением от сжатия (дизельных) также желательно иметь интенсивное турбулентное движение в конце сжатия. Это облегчает перемешивание впрыскиваемого топлива с воздухом, т.е. улучшает использование воздуха для сгорания. Кроме того, необходимо, чтобы температура в конце сжатия обеспечивала воспламенение впрыснутого топлива. Это минимальная степень сжатия, при которой двигатель может работать. В действительности степень сжатия должна быть значительно выше для:

— надежного пуска холодного двигателя при низкой температуре;

— увеличенная температура в конце сжатия сокращает период между началом впрыска топлива и его воспламенением, что обеспечивает более мягкую работу двигателя.

Поэтому ε = 16 – 20. ε > 20 нежелательно. Т.к.повышенное давление в конце сжатия увеличивает максимальное давление при сгорании и нагрузки на кривошипно- шатунный механизм. При этом увеличение использования теплоты очень незначительно.

1.6.4. Процесс сгорания (см. раздел 2)

Принцип работы и устройство двигателя

Двигатель внутреннего сгорания называется так потому что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, образующихся в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя. Выделяемая в этом процессе энергия преобразуется в механическую работу.


В процессе эволюции ДВС выделились несколько типов двигателей, их классификация и общее устройство:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на:
    • карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
    • инжекторные, в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
    • дизельные, в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается до температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
  • Роторно-поршневые двигатели внутреннего сгорания. Здесь тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
  • Газотурбинные двигатели внутреннего сгорания. Особенности их устройства заключаются в преображении тепловой энергии в механическую работу с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.

Далее рассматриваются только поршневые двигатели, так как только они получили широкое распространение в автомобильной промышленности. Основные причины тому: надежность, стоимость производства и обслуживания, высокая производительность.

Устройство двигателя внутреннего сгорания

Первые поршневые ДВС имели лишь один цилиндр небольшого диаметра. В дальнейшем, для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. “Сердце” современного автомобиля может иметь до 12 цилиндров.

Наиболее простым является двигатель с рядным расположением цилиндров. Однако, с увеличением количества цилиндров растет и линейный размер двигателя. Поэтому появился более компактный вариант расположения — V-образный. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Обычно используется для 6-цилиндровых двигателей и более.

Читайте также  Как увеличить мощность карбюраторного двигателя?

Одна из основных частей двигателя — цилиндр (6), в котором находится поршень (7), соединенный через шатун (9) с коленчатым валом (12). Прямолинейное движение поршня в цилиндре вверх и вниз шатун и кривошип преобразуют во вращательное движение коленчатого вала.

На конце вала закреплен маховик (10), назначение которого придавать равномерность вращению вала при работе двигателя. Сверху цилиндр плотно закрыт головкой блока цилиндров (ГБЦ), в которой находятся впускной (5) и выпускной (4) клапаны, закрывающие соответствующие каналы.

Клапаны открываются под действием кулачков распределительного вала (14) через передаточные механизмы (15). Распределительный вал приводится во вращение шестернями (13) от коленчатого вала.
Для уменьшения потерь на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой. Для этого в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Топливо воспламеняется в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение.

Принцип работы двигателя

Из-за низкой производительности и высокого расхода топлива 2-тактных двигателей практически все современные двигатели производят с 4-тактными циклами работы:

  1. Впуск топлива;
  2. Сжатие топлива;
  3. Сгорание;
  4. Вывод отработанных газов за пределы камеры сгорания.

Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла.

Во время второго такта поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени работы двигателя.

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600О С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Системы двигателя

Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. ГРМ (механизм регулировки фаз газораспределения);
  2. Система смазки;
  3. Система охлаждения;
  4. Система подачи топлива;
  5. Выхлопная система.

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал;
  • Впускные и выпускные клапаны с пружинами и направляющими втулками;
  • Детали привода клапанов;
  • Элементы привода ГРМ.

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон);
  • Насос подачи масла;
  • Масляный фильтр с редукционным клапаном;
  • Маслопроводы;
  • Масляный щуп (индикатор уровня масла);
  • Указатель давления в системе;
  • Маслоналивная горловина.

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя;
  • Насос (помпа);
  • Термостат;
  • Радиатор;
  • Вентилятор;
  • Расширительный бачок.

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак;
  • Датчик уровня топлива;
  • Фильтры очистки топлива — грубой и тонкой;
  • Топливные трубопроводы;
  • Впускной коллектор;
  • Воздушные патрубки;
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор;
  • Приемная труба глушителя;
  • Резонатор;
  • Глушитель;
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

maxx096 › Блог › Двигатель внутреннего сгорания (устройство и принцип работы).

Продолжаем познавательную страничку.

В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.

Различают следующие основные типы ДВС:

• Поршневой двигатель внутреннего сгорания;
• Роторно-поршневой двигатель внутреннего сгорания;
• Газотурбинный двигатель внутреннего сгорания.

Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.

Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются:

Автономность;
• Универсальность
(сочетание с различными потребителями);
• Невысокая стоимость;
• Компактность;
• Малая масса;
• Возможность быстрого запуска;
• Многотопливность.

Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков, к которым относятся:

• Высокий уровень шума;
• Большая частота вращения коленчатого вала;
• Токсичность отработавших газов;
• Невысокий ресурс;
• Низкий коэффициент полезного действия.

В зависимости от вида применяемого топлива различают следующие поршенвые ДВС:

Бензиновые двигатели;
• Дизельные двигатели.

Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.

Водородный двигатель с точки зрения экологии является перспективным, т.к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.

Поршневой двигатель внутреннего сгорания имеет следующее общее устройство:

• Корпус;
• Кривошипно-шатунный механизм;
• Газораспределительный механизм;
• Впускная система;
• Топливная система;
• Система зажигания
(бензиновые двигатели);
• Система смазки;
• Система охлаждения;
• Выпускная система;
• Система управления.

Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.

Впускная система предназначена для подачи в двигатель воздуха. Топливная система питает двигатель топливом. Совместная работа данных систем обеспечивает образование топливно-воздушной смеси. Основу топливной системы составляет система впрыска.

Система зажигания осуществляет принудительное воспламенение топливно-воздушной смеси в бензиновых двигателях. В дизельных двигателях происходит самовоспламенение смеси.

Система смазки выполняет функцию снижения трения между сопряженными деталями двигателя. Охлаждение деталей двигателя, нагреваемых в результате работы, обеспечивает система охлаждения. Важные функции отвода отработавших газов от цилиндров двигателя, снижения их шума и токсичности предписаны выпускной системе.

Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.

Принцип работы двигателя внутреннего сгорания основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.

Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель):

• Впуск;
• Сжатие;
• Рабочий ход;
• Выпуск.

Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).

На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.

Читайте также  После раскоксовки двигатель троит что делать?

На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.

Такт рабочий ход сопровождается воспламенением топливно-воздушной смеси (принудительное или самовоспламенение). В результате возгорания образуется большое количество газов, которые давят на поршень и заставляют его двигаться вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля.

При такте выпуск открываются выпускные клапаны газораспределительного механизма, и отработавшие газы удаляются из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу.

Рассмотренный принцип работы двигателя внутреннего сгорания позволяет понять, почему ДВС имеет небольшой коэффициент полезного действия — порядка 40%. В конкретный момент времени как правило только в одном цилиндре совершается полезная работа, в остальных – обеспечивающие такты: впуск, сжатие, выпуск.

Вот так вот, Друзья! Благодарю за внимание!

Основные механизмы и системы двигателя их название и назначение.

Билет 1.

Основные механизмы и системы двигателя их название и назначение.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм служит для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала двигателя.

Основные элементы: блок цилиндров, головка блока цилиндров, крышки распределительных шестерен, картер маховика, маховик, коленчатый вал, шатунно-поршневая группа

Газораспределительный механизм

Газораспределительный механизм обеспечивает впуск в цилиндры воздуха и выпуск отработавших газов в определенные моменты относительно ВМТ и НМТ (нижняя мертвая точка) при перемещении поршня в соответствии с происходящими процессами в цилиндрах двигателя.

Основные элементы: распределительный вал, механизм привода клапанов, клапаны.

Система охлаждения

Система охлаждения обеспечивает регулируемый отвод тепла от нагревающихся элементов двигателя.

Основные элементы: водяной насос, радиатор, термостат, вентилятор.

Система смазки

Система смазки обеспечивает подачу масла к трущимся поверхностям двигателя для уменьшения трения. Обеспечивает дополнительное охлаждение элементов двигателя.

Основные элементы системы: маслоприемник с сетчатым фильтром, масляный насос, масляный фильтр, масляный радиатор.

Система питания

Система питания обеспечивает впрыск топлива под высоким давлением в цилиндры двигателя в конце такта сжатия с временной синхронизацией момента начала подачи топлива относительно ВМТ поршня в соответствии с режимом работы двигателя.

Основные элементы системы: топливный насос высокого давления, подкачивающий топливный насос с топливным фильтром, топливозаборник с сетчатым фильтром грубой очистки топлива.

Система предпускового подогрева

Система предпускового подогрева дизельного двигателя обеспечивает прогрев камеры сгорания перед пуском двигателя.

Основные элементы системы: накальные свечи предварительного нагрева и схема управления.

Несущим элементом двигателя является блок цилиндров, к которому крепятся все остальные элементы механизмов и систем двигателя.

Назначение карбюратора

Основное назначение карбюратора состоит в приготовлении горючей смеси, которая затем по впускному трубопроводу поступает в цилиндры.

Устройство карбюратора:

Простейший карбюратор состоит из двух камер: поплавковой камеры и смесительной камеры.
Клапанная система и поплавок поддерживают в поплавковой камере постоянный уровень топлива.

Поплавковая камера

Поплавковая камера имеет отверстие, через которое внутренняя часть сообщается с атмосферой.
Поплавковая камера сообщается посредством распылителя с камерой смешения.

Во время работы двигателя, атмосферный воздух, поступающий в цилиндры при тактах впуска, проходит через смесительную камеру, в которой, как и в цилиндрах создается разрежение.
В смесительной камере максимальная скорость движения воздуха отмечается в горловине диффузора.
Вследствие разницы давлений – атмосферного в поплавковой камере и пониженного в диффузоре, топливо вытекает из распылителя и распыляется потоком воздуха, движущегося через диффузор.

Пусковое устройство карбюратора

Пусковое устройство карбюратораобеспечивает образование богатой смеси, необходимой для легкого пуска холодного двигателя. Таким устройством является воздушная заслонка, располагаемая в воздушном патрубке.
Главная дозирующая система приготовляет обедненную горючую смесь, обеспечивающую экономичную работу двигателя под нагрузкой.

Ускорительный насос

Ускорительный насос обогащает горючую смесь во время резкого открытия дросселя

Билет 2.

Такты двигателя, их наименование и характеристика

Процесс, происходящий в цилиндре двигателя за один ход поршня, называется тактом. Совокупность всех процессов, происходящих в цилиндре, т. е. впуск горючей смеси, сжатие ее, расширение газов при сгорании и выпуск продуктов сгорания, называется рабочим циклом.
Если рабочий цикл совершается за четыре хода поршня, т. е. за два оборота коленчатого вала, то двигатель называется четырехтактным.

Первый такт — впуск

Поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разрежение и горючая смесь, состоящая из паров бензина и воздуха, поступает в цилиндр. Горючая смесь смешивается с продуктами, сгорания, оставшимися в цилиндре от предшествующего цикла, и образует рабочую смесь.

Второй такт — сжатие

Поршень перемещается от НМТ к ВМТ, оба клапана закрыты. Давление и температура рабочей смеси повышаются

Четвертый такт — выпуск

Поршень перемещается от НМТ к ВМТ, выпускной клапан открыт. Отработавшие газы выпускаются из цилиндра в атмосферу. Процесс выпуска протекает при давлении выше атмосферного.

Билет 3.

Билет 4.

Первый такт — впуск

Поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разрежение и горючая смесь, состоящая из паров бензина и воздуха, поступает в цилиндр. Горючая смесь смешивается с продуктами, сгорания, оставшимися в цилиндре от предшествующего цикла, и образует рабочую смесь.

Второй такт — сжатие

Поршень перемещается от НМТ к ВМТ, оба клапана закрыты. Давление и температура рабочей смеси повышаются

Четвертый такт — выпуск

Поршень перемещается от НМТ к ВМТ, выпускной клапан открыт. Отработавшие газы выпускаются из цилиндра в атмосферу. Процесс выпуска протекает при давлении выше атмосферного.

Назначение топливного бака

Топливный бак предназначен для хранения запаса топлива на опре­деленный пробег автомобиля без заправки

Билет 5.

Билет 6.

Первый такт — впуск

Поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разрежение и горючая смесь, состоящая из паров бензина и воздуха, поступает в цилиндр. Горючая смесь смешивается с продуктами, сгорания, оставшимися в цилиндре от предшествующего цикла, и образует рабочую смесь.

Второй такт — сжатие

Поршень перемещается от НМТ к ВМТ, оба клапана закрыты. Давление и температура рабочей смеси повышаются

Четвертый такт — выпуск

Поршень перемещается от НМТ к ВМТ, выпускной клапан открыт. Отработавшие газы выпускаются из цилиндра в атмосферу. Процесс выпуска протекает при давлении выше атмосферного.

Билет 7.

Система охлаждения

Система охлаждения обеспечивает регулируемый отвод тепла от нагревающихся элементов двигателя.

Основные элементы: водяной насос, радиатор, термостат, вентилятор.

Система смазки

Система смазки обеспечивает подачу масла к трущимся поверхностям двигателя для уменьшения трения. Обеспечивает дополнительное охлаждение элементов двигателя.

Основные элементы системы: маслоприемник с сетчатым фильтром, масляный насос, масляный фильтр, масляный радиатор.

Система питания

Система питания обеспечивает впрыск топлива под высоким давлением в цилиндры двигателя в конце такта сжатия с временной синхронизацией момента начала подачи топлива относительно ВМТ поршня в соответствии с режимом работы двигателя.

Основные элементы системы: топливный насос высокого давления, подкачивающий топливный насос с топливным фильтром, топливозаборник с сетчатым фильтром грубой очистки топлива.

Билет 8.

Назначение водяного насоса

Водяной насос предназначен для создания в системе охлаждения принудительной циркуляции жидкости

Билет 9.

Назначение поршневых колец

Поршневые кольца предназначены для обеспечения герметичности внутрицилиндрового пространства, т.е. для предотвращения прорыва газов из этого пространства в картер двигателя. Одновременно поршневые кольца отводят в стенки цилиндра большую часть воспринимаемого днищем поршня тепла и препятствуют проникновению масла из картера двигателя внутрь цилиндров.

Билет 10.

Билет 11.

Билет 12.

Билет 13.

Назначение муфты сцепления

Основное назначение муфт – соединение валов и передача вращающего момента.

Муфты сцепления —обеспечивают соединение (сцепление) агрегатов или их разъединение во время работы машины. В свою очередь муфты сцепления подразделяют на управляемые и самоуправляемые(самодействующие).

Билет 14.

Билет 15.

Назначение коробки передач

Назначение коробки передач —изменять силу тяги, скорость и направление движения автомобиля.

Билет 16.

Билет 17.

Билет 18.

А-17ДВ

«А» – резьба (М14х1,25)

«-» — опорная поверхность (плоская)

«17» — калильное число (чем меньше, тем холоднее свеча)

«Д» — длина резьбы (19,0мм или 17,5мм)

«В» — выступание теплового корпуса изолятора (с выступанием)

Билет 19.

Билет 20.

Билет 21.

Билет 22.

Первый такт — впуск

Поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разрежение и горючая смесь, состоящая из паров бензина и воздуха, поступает в цилиндр. Горючая смесь смешивается с продуктами, сгорания, оставшимися в цилиндре от предшествующего цикла, и образует рабочую смесь.

Второй такт — сжатие

Поршень перемещается от НМТ к ВМТ, оба клапана закрыты. Давление и температура рабочей смеси повышаются

Четвертый такт — выпуск

Поршень перемещается от НМТ к ВМТ, выпускной клапан открыт. Отработавшие газы выпускаются из цилиндра в атмосферу. Процесс выпуска протекает при давлении выше атмосферного.

Назначение поршневых колец

Назначение поршневых колец — предотвращение утечек газа через зазор, который должен оставаться между цилиндром и поршнем для обеспечения свободного хода последнего.

Билет 23.

Билет 24.

Билет 25.

Билет 26.

Билет 27.

Назначение дифференциала

Назначение дифференциала — передаёт крутящий момент с двигателя на ведущие колёса.

Билет 28.

Билет 29.

Назначение амортизатора

Назначение амортизаторов — гасить колебания пружин.

Билет 30.

Билет 1.

Основные механизмы и системы двигателя их название и назначение.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Основные механизмы и системы двигателя

Все двигатели, устанавливаемые на автомобилях, состоят из следующих механизмов и систем:

Читайте также  Как измерить мощность двигателя автомобиля?

Кривошипно – шатунный механизм

Кривошипно – шатунный механизм (КШМ) служит для преобразования возвратно – поступательного движения поршней во вращательное движение коленчатого вала и для передачи крутящего момента на трансмиссию.

Неподвижные детали КШМ

Блок цилиндров представляет собой массивный литой корпус, снаружи и внутри которого монтируются все механизмы и системы.

Рис. 2.10. Блок цилиндров V-образного двигателя

Рис. 2.11. Блок цилиндров рядного двигателя

Нижняя часть блока является картером, в литых поперечинах которого расположены опорные гнезда для коренных подшипников коленчатого вала. Такую конструкцию часто называют блок-картером.

В средней части блока V-образного двигателя (рис. 2.10) или в некоторых конструкциях рядного двигателя имеются отверстия для установки подшипников скольжения под опорные шейки распределительного вала.

К нижней части блока цилиндров крепится поддон (поддон картера), служащий резервуаром для масла. К передней части блока цилиндров крепится крышка распределительных шестерен, а к задней – картер маховика.

В блоке предусмотрены отверстия под гильзы цилиндра, опорные поверхности (постели) под коленчатый вал, а также полости для охлаждающей жидкости и крепежные отверстия для установки агрегатов. Блоки цилиндров отливаются из серого чугуна или из цветного сплава (чаще всего алюминиевого).

В блок цилиндров впрессовываются чугунные гильзы, а в некоторых конструкциях блок отливается заодно с цилиндром (только у чугунных блоков).

По конструкции гильзы цилиндра современных автомобильных и тракторных двигателей можно разделить на три основные группы:

  1. «Мокрые» гильзы цилиндров.
  2. «Сухие» гильзы цилиндров.
  3. Гильзы для двигателей с воздушным охлаждением
Рис. 2.12. Виды гильз: а) «сухая» гильза выполнена «заодно» с блоком. Т.к. блок имеет невысокую твердость, но в верхней, наиболее ответственной части впрессована вставка (из износостойкого закаленного чугуна). В блоке выполнена полость для охлаждения, но непосредственного соприкосновения охлаждающей жидкости с гильзой нет. б) «сухая» гильза впрессована в блок. Также нет непосредственного соприкосновения охлаждающей жидкости с гильзой в) «мокрая» гильза. Впрессована по посадочным пояскам, охлаждающая жидкость омывает среднюю часть гильзы. г) «мокрая» гильза со вставкой

Гильза для двигателей с воздушным охлаждением имеют по наружной поверхности ребра для лучшего отвода тепла (рис. 2.13,в).

Рабочая поверхность цилиндра является направляющей для поршня. Для плотного прилегания поршня и поршневых колец к цилиндру и уменьшения сил трения между ними внутреннюю полость цилиндра тщательно обрабатывают с высокой степенью точности и чистоты.

Головка цилиндров закрывает цилиндры сверху, в ней размещены клапаны, верхняя поверхность камер сгорания, свечи, форсунки. В головку цилиндра запрессованы направляющие втулки и седла клапанов. Плоскость разъема между головками и блоком уплотнена прокладками.

Рис. 2.13. Виды гильз: а) «мокрая», б) «сухая» в) с воздушным охлаждением

Между головкой цилиндров и крышкой клапанов установлены пробковые или резиновые прокладки. Головки отливают из алюминиевого сплава или чугуна. Двигатели с рядным расположением двигателя имеют 1 головку цилиндров, V-образные – две головки (по одной на каждый ряд). Головки закрыты крышками и уплотняются резиновыми прокладками.

В последнее время применяются также раздельные головки цилиндров (на каждый цилиндр индивидуальная головка). Например, двигатель ЯМЗ семейства 840.

Поддон картера является защитным кожухом КШМ снизу и резервуаром для масла. Изготавливается из листовой стали или алюминиевого сплава. Имеет отверстие для слива масла, которое закрывается пробкой.

Картер маховика также является защитным кожухом. Изготавливается из алюминиевого сплава или серого чугуна, крепится к задней части блока цилиндров.

Подвижные детали КШМ

Поршневая группа двигателя включает в себя:

Поршень является одним из наиболее важных элементов любого двигателя внутреннего сгорания. Именно на него, выпадает основная нагрузка по преобразованию энергии расширяющихся газов в энергию вращения коленчатого вала. Вот некоторые требования, которым должен соответствовать поршень:

· температура в камере сгорания может достигать более 2000°С, а температура поршня, без риска потери прочности материала, не должна превышать 350°С;

· после сгорания бензино-воздушной смеси, давление в камере сгорания может достигать 80 атмосфер. При таком давлении, оказываемое на днище усилие, будет составлять свыше 4-х тонн. Толщина стенок и днища поршня должна обеспечивать возможность выдерживать значительные нагрузки. Но любое увеличение массы изделия приводит к увеличению динамических нагрузок на элементы двигателя, что в свою очередь, ведет к усилению конструкции и росту массы двигателя;

· зазор между поршнем и поверхностью цилиндра должен обеспечивать эффективную смазку и возможность перемещения с минимальными потерями на трение. Но в тоже время зазор должен учитывать тепловое расширение и исключить возможность заклинивания

· изготовление должно быть достаточно дешевым и отвечать условиям массового производства

Рис. 2.14. Конструкция поршня

Изготавливают поршень из алюминиевого сплава или из чугуна. Для улучшения приработки на начальном этапе работы двигателя на поршень наносят тонкий слой олова (гальваническая операция) или графитизируют (покрывают слоем графита).

По конструкции поршень напоминает перевернутый вверх дном стакан (рис.2.14). Днище поршня – поверхность, обращенная к камере сгорания. Вид днища зависит от назначения двигателя и может иметь разнообразную форму – плоскую или фасонную, с углублением или выпуклую.

Рис. 2.15 Поршневые кольца: а — внешний вид, б — расположение колец на поршне, в — составное маслосъемное кольцо; 1 — компрессионное кольцо, 2 — маслосъемное кольцо, 3 — плоские стальные диски, 4 — осевой расширитель, 5 — радиальный расширитель.

На боковой цилиндрической поверхности поршня расположены канавки, которые предназначены для установки поршневых колец. Две канавки выполнены под компрессионные кольца (служат для создания компрессии – давления, уплотнения, а также для отвода тепла от днища поршня), и одна канавка под маслосъемное кольцо (рис.2.15).

Первое компрессионное кольцо имеет сечение с закругленной фаской, а второе – с острым «скребущим» концом, дополнительная функция – соскребание смазки со стенок гильзы.

Третье – маслосъемное кольцо — состоит из трех отдельных секций: двух узких боковых колец и помещенного между ними волнообразного расширителя. Общая толщина сборки составляет 3 мм.

Компрессионные кольца изготавливаются из чугуна. Для повышения износостойкости их хромируют. Детали маслосъемных колец изготавливают из стали.

В канавке под маслосъемное кольцо есть отверстия, через которые отводится излишек масла во внутреннюю полость поршня.

Днище и уплотняющая часть образуют головку поршня. Для мощных дизельных двигателей (например, двигатели ЯМЗ) поршень отливают с чугунной вставкой. Этим достигается меньший износ поршня.

Нижнюю часть поршня называют юбкой. На этом участке в поршне находятся внутренние бобышки с отверстиями – место, куда устанавливается поршневой палец. Форма юбки может быть разнообразной в зависимости от назначения двигателя

Для компенсации тепловых деформаций, в поперечном сечении поршень выполнен виде овала (большая ось овала перпендикулярна оси поршневого пальца). Это связано с тем, что в районе бобышек под поршневой палец сосредоточен значительный объем металла. При нагреве, в плоскости поршневого пальца, расширение будет осуществляться в большей степени. Овальность и бочкообразность детали в холодном состоянии, позволяет иметь поршень, приближающийся к цилиндрической форме, при работающем двигателе.

Для шарнирного соединения поршня с верхней головкой шатуна служит поршневой палец. Через пальцы передаются значительные усилия, поэтому их изготовляют из легированных или углеродистых сталей с последующей цементацией или закалкой ТВЧ (токами высокой частоты).

Рис. 2.16. Шатунно-поршневая группа: 1 – бобышка, 2 – канавки под кольца, 3 – гильза, 4 – шатун, 5 и 6 – гайка и винт крепления крышки нижней головки шатуна, 7 – крышка нижней головки шатуна, 8 –нижняя головка шатуна, 10 – стопорное кольцо, 11 – поршневой палец, 12 – верхняя головка шатуна, 13 – вкладыш (подшипник скольжения) верхней головки шатуна, 14 – стержень шатуна, 15 и 16 — вкладыш (подшипник скольжения) нижней головки шатуна

Поршневой палец 11 (рис. 2.16) представляет собой толстостенную трубу с тщательно отшлифованной наружной поверхностью, проходящую через верхнюю головку шатуна и концами опирающуюся на бобышки 1 поршня.
По способу соединения с шатуном и поршнем пальцы делятся на плавающие и закрепленные (обычно в головке шатуна). Наибольшее распространение получили плавающие поршневые пальцы, которые свободно поворачиваются в бобышках и во втулке 13, установленной в верхней головке шатуна. Осевое перемещение поршневого пальца ограничивается стопорными кольцами 10, расположенными в выточках бобышек поршня.

Шатун шарнирно соединяет поршень с кривошипом коленчатого вала и служит для преобразования возвратно-поступательного движения во вращательное.

Шатун (рис. 2.16) состоит из:

· верхней головки 12, в которой имеется гладкое отверстие под подшипник поршневого пальца

· стержня двутаврового сечения

· нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вала. Крышка нижней головки крепится с помощью шатунных болтов.

Шатун изготавливают методом горячей штамповки из высококачественной стали.

Коленчатый вал воспринимает усилия от шатунов и передает создаваемый на нем крутящий момент трансмиссии автомобиля. От него также приводятся в действие различные механизмы двигателя (газораспределительный механизм, масляный насос, распределитель зажигания, насос охлаждающей жидкости и др.).

Он имеет коренные и шатунные шейки, противовесы, фланец для крепления маховика, носок, на котором установлены храповик пусковой рукоятки, распределительная шестерня и шкив привода вентилятора и водяного насоса. Шатунная шейка с щеками образует колено, или кривошип. Расположение колен на валу обеспечивает равномерное чередование рабочих ходов. Коленчатый вал штампуют из стали или отливают из специального легированного чугуна (в основном для двигателей легковых автомобилей небольшой мощности).

Количество шатунных шеек в двигателе, имеющем однорядное расположение цилиндров, равно числу цилиндров, а в V-образном двигателе — их в два раза меньше числа цилиндров, так как на каждую шатунную шейку устанавливают по два шатуна.

Рис. 2.17. Коленчатый вал

Маховик (рис. 2.18) представляет собой массивный диск, отливаемый из чугуна. Он повышает равномерность вращения коленчатого вала, что особенно важно при малой частоте вращения, и передает крутящий момент трансмиссии автомобиля. На обод маховика напрессован стальной зубчатый венец, предназначенный для вращения коленчатого вала стартером при пуске двигателя.

Рис. 2.18. Маховик

Механизм газораспределения

Дата добавления: 2019-09-13 ; просмотров: 434 ; Мы поможем в написании вашей работы!