Где образуется рабочая смесь в дизельном двигателе?

Процесс сгорания топливной смеси в дизеле

Для осуществления действительного цикла в дизелях в воздушный заряд, сжатый до давления 2,5—5 МГа и имеющий температуру 750—1000 К, впрыскивается топливо под давлением от 40 до 100 МПа (в зависимости от типа камеры сгорания).

Для эффективного протекания горения топливо должно находиться в парообразном состоянии, но из-за недостатка времени на смесеобразование часть топлива не успеваем испариться и находится в начале горения в капельно-жидком состоянии. Поэтому процессы воспламенения и сгорания в этом случае сложные процессы, и включают в себя физико-химическую подготовку топлива, воспламенение и горение.

Первые очаги пламени появляются одновременно в нескольких точках камеры сгорания. Возникновение этих очагов вызывает нагрев близлежащих участков смеси и общий рост температуры, что вызывает испарение остальных частиц топлива и протекание предпламенных процессов в образующейся горючей смеси. Многоочаговое воспламенение вызывает большую скорость сгорания в начальный период и образующееся пламя практически мгновенно воспламеняет часть поступающего топлива. Однако условия горения этого топлива менее благоприятны из-за недостатка кислорода. Особенно это характерно для последней части впрыскиваемого топлива.

Если учесть характер и интенсивность тепловыделения, изменение температуры и давления в цилиндре в разные моменты времени, то весь процесс горения можно условно разделить на четыре фазы.

Рис. Индикаторная диаграмма и зависимость изменения температуры газов от угла поворота коленчатого вала в цилиндре дизеля

Первая фаза горения (01) — задержка воспламенения, начинается с момента поступления топлива (точка 1) и заканчивается в момент отрыва кривой сгорания от линии сжатия (точка 2) Впрыск топлива происходит до прихода поршня в ВМТ. Угол опережения впрыска топлива находится в пределах 20—35° поворота коленчатого вала.

Во время впрыска струя топлива, выходящая из форсунки под большим давлением, разбивается о плотные слои воздуха на мельчайшие капли, образуя факел распыления. При этом завихрения, которые придаются заряду сжимаемого воздуха, оказывают существенное влияние на развитие этого факела.

Рис. Развитие топливных струй в заряде: а — неподвижном; б — движущимся со скоростью 15 м/с; в — движущимся со скоростью 35 м/с

Концентрация топлива в таком факеле изменяется по поперечному сечению и длине. В ядре факела находятся наиболее крупные, а на периферии — наиболее мелкие капли, находящиеся друг от друга на значительных расстояниях. Следовательно, структура рабочей смеси в дизелях крайне неоднородна, поэтому здесь коэффициент избытка воздуха обычного смысла лишен, так как он не дает представления о действительном составе смеси.

Локальные значения коэффициента избытка воздуха по различным зонам камеры сгорания могут меняться от 0 (жидкие капли) до бесконечности (воздух). Именно наличие всей гаммы составов смеси и температур определяет возможность воспламенения в среднем очень бедной смеси, например, при а = 6 и более.

Таким образом, период задержки воспламенения включает в себя время, необходимое для распада струй на капли, некоторого продвижения капель по объему камеры сгорания, прогрева, частичного испарения и смешения топливных паров с воздухом, а также время саморазгона химических реакций.

Если период задержки воспламенения больше продолжительности впрыска, то все топливо оказывается поданным в цилиндр до начала воспламенения. При этом большая часть его успевает испариться и смешаться с воздухом. В результате объемного воспламенения этой части топлива в цилиндре развивается резкое повышение давления с высокими динамическими нагрузками на детали и повышенным уровнем шума. Поэтому длительный период задержки воспламенения нежелателен.

Продолжительность первой фазы сгорания составляет 1—3 мс, что соответствует 12—25° поворота коленчатого вала.

Факторы влияющие на продолжительность первой фазы сгорания

  1. Воспламеняемость топлива, которая оценивается цетановым числом. Чем выше цетановое число, тем лучше воспламеняемость.
  2. Давление и температура воздушного заряда в начале впрыска топлива. При увеличении давления и температуры период задержки воспламенения сокращается.

Рис. Различные конструкции камер сгорания в поршне: а — полусферическая (дизели ВТЗ); б — четырехтактного дизеля ЯМЗ; в — дизеля ЦНИДИ; г —дизеля фирмы «МАНН»; д — дизеля фирмы «Дойтц»; е — дизеля фирмы «Гессельманн»; ж — дизеля фирмы «Даймлер-Бенц»; бнз — надпоршневой зазор

Вторая фаза горения (02) — самовоспламенение и быстрое горение начинается с момента воспламенения (см. рис. точка 2) и заканчивается в момент достижения максимального давления в цилиндре (точка 3). В первую очередь сгорают однородные слои смеси топлива и воздуха хорошо перемешанные между собой. При этом пламя распространяется очень быстро, соответственно быстро растет давление, в определенных случаях с образованием ударной волны, распространяющейся со скоростью звука. Но в отличие от карбюраторных двигателей в дизелях эти волны не переходят в детонационные, так как структура смеси по всему объему камеры сгорания неравномерна. Это позволяет получать более высокую степень сжатия.

Рис. Способы создания вихревого движения заряда в цилиндре при впуске:
а — тангенциальный впускной канал; б — клапан с экраном; в — тангенциальные продувочные окна двухтактного дизеля; г — винтовой канал; д — экран на седле клапана

После того, как сгорит хорошо подготовленная к воспламенению топливовоздушная смесь, горение продолжается в зонах, где структура смеси более неравномерна. Здесь на индикаторной диаграмме наблюдается некоторый спад роста давления.

Рис. Разделенные камеры сгорания: а — вихревая (на верхней проекции показано направление перетекания заряда из основной полости в вихревую камеру при сжатии, на нижней — из вихревой камеры в основную при расширении); б — предкамера: в — вихревая типа «Пинтакс»; г — предкамера малого перепада давления дизеля MWM

В течение второй фазы выделяется 30—45 % всей теплоты. Температура рабочего тела возрастает до 1600—1800 К. Максимальное давление может достичь 6—9 МПа, а при наддуве превысить 10 МПа. Продолжительность второй фазы 0,8—1,5 мс, что соответствует 10—20° поворота коленчатого вала.

Факторы влияющие на развитие и продолжительность второй фазы

  1. Количество топлива, прошедшего предпламенную подготовку за период задержки воспламенения и сгорающее с большой скоростью. Чем больше подача топлива и мельче распыление, тем интенсивнее тепловыделение и рост давления.
  2. Тип камеры сгорания. Влияние конструкции камеры на первую фазу горения приводит к определенному развитию и второй фазы, так как определяет количество топливовоздушной смеси, подготовленной к воспламенению в течение первой фазы.
  3. Нагрузка. С уменьшением нагрузки продолжительность второй фазы горения сокращается, так как уменьшается величина впрыскиваемой порции топлива и время его подачи.
  4. Частота вращения коленчатого вала. При росте частоты вращения коленчатого вала улучшается качество распыления, сокращается продолжительность впрыска, растет давление и температура заряда. Все это приводит к сокращению второй фазы горения.

Третья фаза горения (G3) — характеризуется плавным изменением давления Началом этой фазы считается конец второй фазы (точка 3), а окончанием — момент, соответствующий достижению максимальной средней температуры газов в цилиндре (точка 4). К началу третьей фазы все несгоревшее топливо, поданное в цилиндр во время первых двух фаз, находится в виде капель или сгустков паров, которые отделены от зон со свободным кислородом фронтом пламени или продуктами горения. В результате происходит термическое разложение капель топлива (крекинг) с образованием частиц углерода в виде сажи, которая, покидая цилиндр вместе с отработавшими газами, вызывает сильное дымление на выпуске. Горение продолжается при увеличивающемся объеме камеры, поэтому давление плавно понижается.

За время третьей фазы выделяется 25—30 % теплоты, поэтому температура продолжает повышаться, достигая в конце фазы 1800—2200 К. Продолжительность третьей фазы — 1—2 мс, что соответствует 15—25° поворота коленчатого вала.

Факторы влияющие на развитие третьей фазы

  1. Качество распыления и количество топлива, впрыскиваемого после начала сгорания. Чем меньше подано топлива до начала третьей фазы горения, тем меньше будет выделено теплоты в этой фазе, что характерно для работы дизеля на малых нагрузках.
  2. Скорость движения воздушного заряда. Рост скорости движения заряда увеличивает тепловыделение, но это происходит до определенного момента. При чрезмерном завихрении заряда тепловыделение в третьей фазе снижается, так как в этом случае продукты сгорания из зоны одного факела попадают в зону другого, увеличивая неполноту сгорания.
  3. Частота вращения коленчатого вала С ростом частоты вращения коленчатого вала скорость движения заряда увеличивается, а распыление улучшается. Продолжительность третьей фазы сокращается.

Четвертая фаза горения (04) — догорание начинается в момент достижения максимальной температуры и продолжается в течение всего времени догорания топлива. В течение этой фазы догорает топливо, не успевшее сгореть в третьей фазе, причем происходит это в условиях недостатка кислорода, так как значительное его количество уже израсходовано. Поэтому догорание протекает медленно.

За время четвертой фазы при полной нагрузке дизеля выделяется 15—25 % теплоты. Таким образом, общее количество тепловыделения к концу четвертой фазы оставляет 90—95 %. Остальные 5—10 % теряются вследствие неполноты сгорания топлива. Продолжительность четвертой фазы 3,5—5 мс. что соответствует 50—60° поворота коленчатого вала.

Дизельный двигатель: устройство, принцип работы, преимущества

Дизельный двигатель

Дизельный двигатель (дизель) представляет собой поршневой ДВС, принцип работы которого основан на самовоспламенении топлива при воздействии горячего сжатого воздуха.

Конструкция дизеля в целом мало чем отличается от бензинового двигателя, за исключением того, что в дизеле отсутствует как таковая система зажигания, поскольку воспламенение топлива происходит по другому принципу. Не от искры, как в бензиновом двигателе, а от высокого давления, с помощью которого сжимается воздух, из-за чего тот сильно разогревается. Высокое давление в камере сгорания накладывает особые требования к изготовлению деталей клапанов, которые предназначены для восприятия более серьезных нагрузок (от 20 до 24 единиц).

Дизельные двигатели применяются не только на грузовых, но и на многих моделях легковых автомобилей. Дизели могут работать на различных типах топлива – на рапсовом и пальмовом масле, на фракционных веществах и на чистой нефти.

Читайте также  116 дмрв на какой двигатель?

Принцип действия дизельного двигателя

Принцип действия дизеля основан на компрессионном воспламенении топлива, которое попадает в камеру сгорания и смешивается с горячей воздушной массой. Рабочий процесс дизеля зависит исключительно от неоднородности ТВС (топливно-воздушной смеси). Подача ТВС в таком типе двигателя происходит раздельно.

Вначале подается воздух, который в процессе сжатия нагревается до высоких температур (около 800 градусов по Цельсию) , затем в камеру сгорания под высоким давлением (10-30 МПа) подается топливо, после чего происходит его самовоспламенение.

Сам процесс воспламенения топлива всегда сопровождается высокими уровнем вибраций и шума, поэтому двигатели дизельного типа являются более шумными в сравнении с бензиновыми собратьями.

Подобный принцип работы дизеля позволяет использовать более доступные и дешевые (до недавнего времени 🙂 ) виды топлива, снижая уровень затрат на его обслуживание и заправку.

Дизели могут иметь как 2, так и 4 рабочих такта (впуск, сжатие, рабочий ход и выпуск). Большинство автомобилей оснащено 4-х тактовыми дизельными двигателями.

Типы дизельных двигателей

По конструкционным особенностям камер сгорания дизели можно разделить на три типа:

  • С разделенной камерой сгорания. В таких устройствах подача топлива осуществляется не в основную, а в дополнительную, т.н. вихревую камеру, которая располагается в головке цилиндрового блока и соединяется с цилиндром каналом. При попадании в вихревую камеру воздушная масса максимально сжимается, тем самым улучшая процесс воспламенения топлива. Процесс самовоспламенения начинается в вихревой камере, затем переходит в основную камеру сгорания.
  • С неразделенной камерой сгорания. В таких дизелях камера располагается в поршне, а топливо подается в пространство над поршнем. Нераздельные камеры сгорания с одной стороны позволяют экономить расход топлива, с другой стороны – повышают уровень шума при работе двигателя.
  • Двигатели предкамерные. Подобные дизели оснащаются вставной форкамерой, которая соединяется с цилиндром тонкими каналами. Форма и размер каналов определяют скорость движения газов при сгорании топлива, снижая уровень шума и токсичности, увеличивая ресурс работы двигателя.

Топливная система в дизельном двигателе

Основой любого двигателя дизельного типа является его топливная система. Основной задачей топливной системы является своевременная подача нужного количества топливной смеси под заданным рабочим давлением.

Важными элементами топливной системы в дизельном двигателе являются:

  • насос высокого давления для подачи топлива (ТНВД);
  • топливный фильтр;
  • форсунки

Топливный насос

Насос отвечает за подачу топлива к форсункам по установленным параметрам (в зависимости от числа оборотов, рабочего положения регуляторного рычага и давления турбонаддува). В современных дизельных двигателях могут применяться два типа насосов для топлива – рядные (плунжерные) и распределительные.

Топливный фильтр

Фильтр является важной составляющей частью двигателя дизельного типа. Топливный фильтр подбирается строго в соответствии с типом двигателя. Фильтр предназначен для выделения и удаления из топлива воды, и лишнего воздуха из топливной системы.

Форсунки

Форсунки не менее важные элементы топливной системы в дизеле. Своевременная подача топливной смеси в камеру сгорания возможна только при взаимодействии топливного насоса и форсунок. В дизелях применяются два типа форсунок – с многодырчатым и шрифтовым распределителем. Распределитель форсунок определяет форму факела, обеспечивая более эффективный процесс самовоспламенения.

Холодный пуск и турбонаддув дизельного двигателя

Холодный пуск отвечает за механизм предпускового подогрева. Это обеспечивается за счет электрических нагревательных элементов – свечей накаливания, которыми оснащена камера сгорания. При запуске двигателя свечи накаливания достигают температуры в 900 градусов, подогревая воздушную массу, которая попадает в камеру сгорания. Питание со свечи накаливания снимается через 15 секунд после запуска двигателя. Системы подогрева перед запуском двигателя обеспечивают его безопасный запуск даже при низких атмосферных температурах.

Турбонаддув отвечает за повышение мощности и эффективности работы дизеля. Он обеспечивает подачу большего количества воздуха для более эффективного процесса сгорания топливной смеси и увеличения рабочей мощности двигателя. Для обеспечения нужного давления наддува воздушной смеси во всех рабочих режимах двигателя применяется специальный турбонагнетатель.

Остается только сказать, что споры относительно того, что лучше выбрать рядовому автолюбителю в качестве силовой установки в свой автомобиль, бензин или дизель, не утихают до сих пор. Преимущества и недостатки есть у обоих типов двигателя и выбирать необходимо, исходя из конкретных условий эксплуатации автомобиля.

Принцип работы дизеля

ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ — ПРИНЦИП РАБОТЫ

Конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового).

Характерная деталь в конструкции дизелей — это поршень.

Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень.

Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.

ТУРБОДИЗЕЛЬ

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув.

Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя.

Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором. На многих автомобилях устанавливается интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность.

Особенности конструкции

Дизельные двигатели, разумеется, не имеют таких колоссальных отличий как роторно-поршневой двигатель Ванкеля, устройство которого абсолютно не похоже на «анатомию» традиционного ДВС, но у него имеется ряд особенностей, которые проводят между ним и бензиновыми моторами черту.

У дизеля также есть кривошипно-шатунный механизм, но его степень сжатия существенно выше – 19-24 единицы против 9-11 единиц соответственно. Принципиальное отличие дизельного двигателя от бензинового заключается в том, как формируется, воспламеняется и сгорает топливно-воздушная смесь.

У дизельного ДВС отсутствуют свечи зажигания и, соответственно, воспламенение топливно-воздушной смеси происходит от сжатия. При этом, воздух и солярка подаются раздельно. Также следует отметить, что практически ни один современный дизель не обходится без системы наддува, которая используется для повышения рабочих характеристик агрегата. Для оптимизации наддува в максимально широком диапазоне оборотов используются турбонагнетатели с изменяемой геометрией. Дизельный агрегат имеет более высокий коэффициент полезного действия, но он тяжелее и выдает больший крутящий момент при низких оборотах, нежели бензиновый ДВС.

Принцип работы дизельного двигателя

Сперва воздух поступает в цилиндры. В конце такта сжатия, когда поршень почти достиг верхней мертвой точки, температура воздуха в камере сгорания достигает высоких значений (порядка 700-800 градусов) и затем в цилиндры впрыскивается дизельное топливо, которое воспламеняется самостоятельно, без искрового зажигания. Тем не менее, свечи в дизельном агрегате все-таки есть, но то – свечи накаливания, а не зажигания, которые нагревают камеру сгорания для облегчения запуска двигателя в холодное время.

Работа свечи накаливания в дизельном двигателе

Они представляет собой спираль (бывают с металлической и керамические), могут быть установлены в вихревой камере или в форкамере (если речь идет об агрегатах с раздельной камерой сгорания) или непосредственно в камере сгорания (если она нераздельная). При включении зажигания свечи накаливания практически мгновенно, за считанные секунды они раскаляются до температур в районе тысячи градусов и нагревают воздух в камере сгорания, облегчая процесс самовоспламенения топливно-воздушной смеси.

Устройство системы дизельного двигателя

Устройство дизельного двигателя

  • цилиндро-поршневая группа (цилиндры, поршни, шатуны);
  • топливные форсунки;
  • впускные и выпускные клапана;
  • турбина;
  • интеркулер.

Современный дизельный двигатель в разрезе

Конструкция

Принцип работы дизельного двигателя заключается в преобразовании возвратно-поступательных движений кривошипно-шатунного механизма в механическую работу.

Способ приготовления и воспламенения топливной смеси – это то, чем отличается дизельный двигатель от бензинового. В камерах сгорания бензиновых моторов, приготовленная заранее топливно-воздушная смесь воспламеняется с помощью подаваемой свечой зажигания искры.

Особенность дизельного двигателя заключается в том, что смесеобразование происходит непосредственно в камере сгорания. Рабочий такт осуществляется путем впрыскивания под огромным давлением дозированной порции топлива. В конце такта сжатия реакция нагретого воздуха с дизтопливом приводит к воспламенению рабочей смеси.

Двухтактный дизельный двигатель имеет более узкую сферу применения. Использование одноцилиндрового и многоцилиндрового дизелей такого типа имеет ряд конструктивных недостатков:

  • неэффективную продувку цилиндров;
  • повышенный расход масла при активном использовании;
  • залегание поршневых колец в условиях высокотемпературной эксплуатации и прочие.

Двухтактный дизельный двигатель с противоположным размещением поршневой группы имеет высокую первоначальную стоимость и очень сложен в обслуживании. Установка такого агрегата целесообразна лишь на морских судах. В таких условиях, благодаря небольшим габаритам, малой массе и большей мощности при идентичных оборотах и рабочем объеме, двухтактный дизельный двигатель более предпочтителен.

Одноцилиндровый агрегат внутреннего сгорания широко применяется в домашнем хозяйстве в качестве электрогенератора, двигателя для мотоблоков и самоходных шасси.

Такой тип получения энергии налагает определённые условия на устройство дизельного двигателя. Он не нуждается в бензонасосе, свечах, катушке зажигания, высоковольтных проводах и прочих узлах, жизненно необходимых для нормальной работы бензинового ДВС.

В нагнетании и подачи дизтоплива участвуют: топливный насос высокого давления и форсунки. Для облегчения холодного пуска современные моторы используют свечи накала, которые предварительно подогревают воздух в камере сгорания. Во многих автомобилях в баке устанавливается вспомогательный насос. Задача топливного насоса низкого давления в том, чтобы прокачать топливо от бака к топливной аппаратуре.

Читайте также  Какой герметик лучше для поддона двигателя?

Особенности работы дизеля

Работа дизельного двигателя будет выглядеть так:

  1. во время движения поршня в нижнее положение осуществляется приток чистых воздушных масс в цилиндры;
  2. при движении поршня вверх происходит нагрев этого воздуха;
  3. в высочайшей точке создается большая степень сжатия, вследствие чего температура может доходить до 800-900 градусов Цельсия;
  4. при прохождении самой верхней точки осуществляется впрыск топлива в камеры под сильнейшим давлением. В итоге оно соприкасается с раскаленными воздушными массами и происходит воспламенение.
  5. под действием горения происходит рост давления в цилиндре, передающего момент, что и создает шум такого двигателя.

Благодаря указанной схеме дизельному мотору вполне достаточно небогатой смеси топлива. Стоимость подобного топлива невероятно низка, что объясняет его неприхотливость, а также экономичность. К тому же коэффициент полезного действия, а также крутящий момент выше, чем у мотора на бензине.

Но у дизеля есть и определенные минусы:

  1. вибрация и определенная шумность;
  2. определенные затруднения при холодном пуске;
  3. относительно невысокая мощность, но это вряд ли можно отнести к современным моделям.

Устройство дизеля

Дизельный мотор имеет степень сжатия практически в два раза больше бензинового. Поэтому это требует усиления его элементов, так как они требую больших нагрузок. Устройство дизельного двигателя предполагает отсутствие стандартной системы зажигания, так как используется принцип самовоспламенения от сжатия. При этом есть модели, где также применяются свечи. Они используются, чтобы прогревать воздух, что особенно важно зимой, когда пуск затруднителен.

Поршень дизельного двигателя имеет форму, которая зависит во многом от типа камеры сгорания. При этом его днище выступает за блоки цилиндров в момент нахождения в верхней точке. Поэтому экологичность и технические параметры зависят в большей степени от системы впрыска, а также типа камеры сгорания.

Дизельного двигателя

Специфической особенностью дизеля является то, что смесеобразование в нём происходит непосредственно в камере сгорания, а образовавшаяся рабочая смесь самовоспламеняется за счёт энергии адиабатически сжатого воздуха.

Условия испарения, смесеобразования и сгорания в дизеле существенно отличаются от условий протекания этих процессов в бензиновом двигателе.

Впрыск топлива производится в среду нагретого до 500…700 о С и сильно сжатого воздуха. Степень сжатия дизельных двигателя достигает 18 и более единиц. Для получения хорошего распыла и смесеобразования необходимо добиться среднего диаметра капель топлива 0,1–0,01 мм. Топливо в цилиндры подаётся под давлением 150–180 МПа. Для этого используется специальная аппаратура, включающая насосы и форсунки, где имеется ряд деталей прецизионного изготовления. Вследствие этого топливная система дизеля гораздо сложнее, чем у бензинового двигателя.

Кроме того, топливо выполняет ещё и роль смазочного материала деталей высокоточного изготовления в топливной аппаратуре.

Процесс смесеобразования включает:

– распыливание подаваемой в цилиндр порции топлива;

– распределение капелек топлива в камере сгорания;

– нагрев топлива до температуры испарения;

– испарение и диффузию паров топлива;

– нагрев паров до температуры самовоспламенения.

В быстроходных дизелях смесеобразование осуществляется в весьма короткие промежутки времени – за 0,003–0,006 с, а период задержки воспламенения, т. е. времени от начала подачи топлива в цилиндр до появления первых очагов пламени, – 0,0015–0,003 с.

К началу воспламенения процессы смесеобразования не успевают завершиться во всём объёме камеры и продолжают развиваться одновременно с процессом горения топливовоздушного заряда. При этом вследствие повышения температуры скорости процессов физико-химической подготовки ещё не участвующего в горении топлива значительно возрастают. Однако в дальнейшем условия воспламенения и сгорания топлива, особенно последние части впрыскиваемой порции, ухудшаются из-за недостаточного подвода кислорода в зону реакции и фракционирования при испарении капель топлива (в последнюю очередь испаряются и участвуют в горении высококипящие углеводороды с большой молекулярной массой). В этих условиях горение последних порций топлива замедляется, особенно при повышенных нагрузках, когда объём впрыскиваемой дозы увеличивается. Восстановившийся углерод не сгорает, и с отработанными газами выбрасывается в атмосферу, что является одной из причин дымления дизеля.

На рис. 3.1 показана индикаторная диаграмма рабочего процесса двигателя с воспламенением от сжатия, развёрнутая по углу поворота коленчатого вала.

Рис. 3.1. Развёрнутая индикаторная диаграмма рабочего процесса дизельного двигателя

Пунктиром показано изменение давления в камере сгорания неработающего двигателя. В непрерывном рабочем процессе можно условно выделить три стадии:

1. Процессы, протекающие в камере сгорания от момента начала впрыска (точка 1) до образования очага пламени, т. е. период задержки воспламенения(ПЗВ). С момента образования очага пламени начинается резкое повышение давления, и этот момент характеризуется на индикаторной диаграмме точкой отрыва линии давления работающего двигателя (точка 2) от линии сжатия.

Во время ПЗВ происходит распыливание, смешение и испарение топлива, а также его предпламенные превращения, заканчивающиеся в некоторых частях смеси образованием первичных очагов горения. К началу воспламенения достаточно глубокие химические процессы окисления успевают произойти в незначительной части топливного заряда.

2. Распространение турбулентного горения топливовоздушной смеси. Вторая стадия начинается с момента самовоспламенения (точка 2) и длится до точки 3. После образования первоначальных очагов воспламенения и начавшегося турбулентного горения возможно образование и новых очагов, от которых также распространяется фронт пламени по горючей смеси. Если предпламенная подготовка смеси в первой стадии развивается недостаточно быстро, то к моменту начала воспламенения в камере сгорания накапливается излишне большое количество гетерогенной топливовоздушной смеси и практически одновременно возникает большое количество начальных очагов воспламенения. В этих случаях зона реакции может распространяться за счёт самоумножения очагов воспламенения – последовательного самовоспламене-ния предварительно подготовленной горючей смеси. Такое горение обычно приводит к высокой скорости нарастания давления в камере сгорания и жёсткой работе двигателя.

3. Догорание рабочей смеси в цилиндрах двигателя. Оно происходит в условиях высоких температур и уменьшенной концентрации кислорода при движении поршня к нижней мёртвой точке. В фазе догорания существенное влияние на скорость горения оказывает повышенная концентрация продуктов сгорания. От количества смеси, догорающей в третьей стадии, и условий догорания зависят полнота сгорания топлива и дымление двигателя.

Мягкая и жёсткая работа двигателя определяется скоростью нарастания давления в камере сгорания при повороте коленчатого вала (п.к.в.) на один градус. Определяющим фактором при этом является период задержки самовоспламенения топлива.

Средняя величина жёсткости работы (нормальная работа) современных дизелей находится в пределах 0,4–0,5 МПа/град. п. к. в. (зависимости от степени сжатия). При больших скоростях нарастания давления наблюдается жёсткая работа двигателя. При меньших – мягкая.

Период задержки воспламенения при прочих равных технических условиях зависит от строения и химической активности углеводородов, входящих в состав дизельного топлива.

Наибольшим ПЗВ обладают ароматические углеводороды, далее идут изоалканы, нафтены и непредельные углеводороды.

Наименьшим ПЗВ обладают алканы нормального строения. ПЗВ уменьшается для углеводородов одинакового строения по мере увеличения их молекулярной массы.

При больших ПЗВ к началу воспламенения в камере сгорания накапливается значительное количество смеси, подготовленной к сгоранию. В результате происходит воспламенение больших количеств горючей смеси и чрезмерно быстрое нарастание давления, что приводит к жёсткой работе дизелей.

При малых ПЗВ топливо, впрыскиваемое в камеру сгорания, начинает воспламеняться и сгорать не по всему объёму, а в непосредственной близости от форсунки. В результате следующие порции топлива будут поступать не в атмосферу почти чистого горячего воздуха, а в воздух, смешанный с продуктами сгорания этого такта работы двигателя. Это приводит к неполному сгоранию, дымлению и потере мощности двигателя из-за неравномерного смесеобразования в объёме камеры сгорания.

Самовоспламеняемость топлива количественно оценивается цетановым числом (ЦЧ), являющимся показателем самовоспламеняемости.

Цетановое число – процентное (по объёму) содержание цетана (гексадекана) в такой его смеси с альфаметилнафталином (С11Н10), которая по самовоспламеняемости при стандартных условиях испытания на специальном одноцилиндровом двигателе эквивалентна испытуемому топливу. Самовоспламеняемость цетана условно принята за 100 единиц, а альфаметилнафталина – за 0. Чем больше ЦЧ, тем лучше самовоспламе-няемость топлива и меньше его ПЗВ.

На ПЗВ и характер процесса сгорания топлива в дизельном двигателе существенное влияние оказывают конструктивные и эксплуатационные факторы. Действие этих факторов проявляется через изменение режима работы, который, в свою очередь, влияет на мощность, экономичность и надёжность работы дизеля.

Факторы, влияющие на ПЗВ:

– увеличение температуры воздуха в конце такта сжатия улучшает характеристики воспламенения, снижает ПЗВ;

– повышение давления также улучшает условия для самовоспламенения. Однако положительное влияние температур и давления будет сказываться только при условии соблюдения оптимальных параметров распыливания, распределения топлива в камере сгорания и турбулентности среды;

– коэффициент избытка воздуха (α) при работе дизеля колеблется в широких пределах, так как регулирование мощности дизеля осуществляют путём изменения подачи только топлива. Наддув воздуха вызывает повышение температуры и давления в конце такта сжатия, что приводит к сокращению ПЗВ и увеличению скорости сгорания топливовоздушной смеси;

– увеличение тонкости распыливания топлива увеличивает скорость испарения капель, однако при этом уменьшается расстояние разбрызгивания, в результате чего происходит неравномерное распределение топлива по объёму камеры сгорания. В результате местного переобогащения смеси процессы химического предпламенного преобразования смеси замедляются, что приводит к увеличению ПЗВ. Лучшим является неоднородное распыливание, при котором уже первые порции дозы топлива равномерно распределяются по объёму камеры сгорания из-за различия масс капель (различные диаметры отверстий распылителя). Такое распыливание увеличивает скорость сгорания и сокращает продолжительность фазы догорания;

– увеличение степени сжатия приводит к увеличению давления и температуры – уменьшению ПЗВ. К тому же слабее проявляется влияние химического состава топлива на ПЗВ;

– уменьшение угла опережения впрыска топлива сокращает ПЗВ, т. к. ближе к ВМТ, температура и давление в камере сгорания повышается. Но, при слишком малом угле опережения впрыска, основная масса дозы топлива будет догорать в такте расширения, что вызовет падение мощности и дымление двигателя из-за уменьшения скорости нарастания давления и увеличения продолжительности фазы догорания;

Читайте также  Как правильно прогревать дизельный двигатель?

– с увеличением частоты вращения коленчатого вала двигателя усиливается вихревое движение, повышаются температура и давление воздуха в камере сгорания. Это ведёт к сокращению ПЗВ и продолжительности горения, в результате чего основная часть топлива успевает сгореть до начала фазы догорания. Но, при чрезмерном росте частоты вращения коленчатого вала, повышение температуры и давления воздуха и соответствующее ускорение предпламенных процессов уже не успевают скомпенсировать сокращение времени эффективного горения, в результате чего часть топлива, догорающего в третьей стадии, растёт. В итоге – падение эффективной мощности двигателя и увеличение удельного расхода топлива.

Зависимость между ЦЧ и ПЗВ показана на рис. 3.2.

В свете вышеизложенного сформулируем требования к дизельным топливам:

– удовлетворительная вязкость в широком диапазоне температур, обеспечивающая бесперебойную подачу топлива в камеру сгорания;

– оптимальная воспламеняемость и испаряемость, необходимые для лёгкого пуска и плавной работы двигателя на различных эксплуатационных режимах;

– отсутствие отложений в системе питания и в камере сгорания при работе двигателя и хранении техники;

– устойчивость к окислению в условиях хранения и транспортирования;

– нейтральность к конструкционным материалам двигателя и средств хранения, заправки и транспортирования;

– токсичность и экологичность;

– широкая сырьевая база;

Рис. 3.2. Влияние цетанового числа на период задержки воспламенения t. 1 – четырёхтактный двигатель для испытаний топлив при , n = 900 мин -1 , температуре охлаждающей воды t = 85 °C; 2 – четырёхтактный двигатель для испытаний топлив при , n = 900 мин -1 , t = 100 °C; 3 – двухтактный двигатель при , n = 900 мин -1 ; 4 – двухтактный двигатель при , n = 1800 мин -1

Дата добавления: 2015-03-26 ; просмотров: 2360 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Дизельные двигатели

Конструкционные особенности дизельных двигателей

Дизельный двигательный агрегат – одна из разновидностей поршневых силовых установок. По своему исполнению он почти ничем не отличается от бензинового двигателя внутреннего сгорания. Там имеются те же цилиндры, поршни, шатуны, коленвал и прочие элементы.

Действие «дизеля» основано на свойстве самовоспламенения дизтоплива, распыляемого в пространстве цилиндра. Клапаны в таком моторе значительно усилены — это необходимо было сделать для того, чтобы агрегат был устойчив к повышенным нагрузкам в течение длительного времени. Из-за этого вес и размеры «дизеля» больше, чем у аналогичной бензиновой установки.

Есть и существенное отличие между дизельными и бензиновыми механизмами. Оно заключается в том, как именно образуется топливовоздушная смесь, каков принцип ее воспламенения и горения. Первоначально в работающие цилиндры направляется обычный чистый воздушный поток. По мере сжатия воздуха он прогревается до температуры около 700 градусов, после чего форсунки впрыскивают горючее в камеру сгорания. Высокая температура способствует моментальному самовозгоранию топлива. Горение сопровождается быстрым нагнетанием высокого давления в цилиндре, поэтому дизельный агрегат издает характерный шум в процессе работы.

Запуск дизельного двигателя

Пуск «дизеля» в холодном состоянии осуществляется благодаря свечам накаливания. Это нагревательные электроэлементы, интегрированные в каждую из камер сгорания. При включении зажигания свечи накаливания нагреваются до сверхвысоких температур = около 800 градусов. При этом разогревается воздух в камерах сгорания. Весь процесс занимает несколько секунд, а о готовности дизеля к запуску водителя оповещает сигнальный индикатор в панели приборов.

Подача электричества на свечи накаливания снимается автоматически примерно через 20 секунд после запуска. Это необходимо для обеспечения устойчивой работы холодного двигателя.

Устройство топливной системы дизельного мотора

Одной из самых важных систем двигателя, работающего на дизельном топливе, считается система подачи горючего. Ее главная задача – подача дизтоплива в цилиндр в жестко ограниченном количестве и только в заданный момент.

Основные компоненты топливной системы:

  • топливный насос высокого давления (ТНВД);
  • форсунки подачи горючего;
  • фильтрующий элемент.

Основное назначение ТНВД — подача горючего на форсунки. Он работает по заданной программе в соответствии с тем режимом, в котором функционирует мотор, и действиями водителя. Фактически, современные топливные насосы являются высокотехнологичными механизмами, которые автоматически управляют работой дизельного мотора на основании управляющих воздействий водителя.

В тот момент, когда водитель выжимает газовую педаль, он не меняет количество подачи горючего, а вносит изменения в работу регуляторов в зависимости от силы нажатия на педаль. Именно регуляторы изменяют количество оборотов двигателя и, соответственно, скорость машины.

Как отмечают специалисты ГК Favorit Motors, на легковых авто, кроссоверах и внедорожниках чаще всего устанавливают ТНВД распределительной конструкции. Они имеют компактные размеры, равномерно подают топливо в цилиндры и качественно работают на высоких оборотах.

Форсунка получает топливо от насоса и регулирует его количество перед тем, как перенаправить горючее в камеру для сгорания. На дизельные агрегаты устанавливают форсунки с распределителем одного из двух видов: шрифтовым либо многодырчатым. Иглы распределителей изготавливаются из высокопрочных жаростойких материалов, поскольку они работают в условиях высоких температур.

Топливный фильтр — это простой и, одновременно, один из важнейших компонентов дизельного агрегата. Его рабочие параметры должны в точности соответствовать конкретному типу двигателя. Назначение фильтра — отделение конденсата (для этого предназначено нижнее сливное отверстие с пробкой) и устранение лишнего воздуха из системы (используется верхний насос подкачки). На некоторых моделях авто предусмотрена функция электрического подогрева топливного фильтра — это позволяет упростить запуск дизеля в зимний период.

Виды дизельных агрегатов

В современном автомобилестроении используются два типа дизельных силовых установок:

  • двигатели с прямым впрыском;
  • дизели с раздельной камерой сгорания.

У дизельных агрегатов с прямым впрыском камера сгорания интегрирована в поршень. Горючее впрыскивается в пространство над поршнем, после чего направляется в камеру. Прямой впрыск топлива обычно используется на низкооборотных силовых установках с большим рабочим объемом, где имеются сложности с процессом воспламенения.

Более распространены сегодня дизельные моторы с раздельной камерой. Впрыск горючей смеси производится не в пространство над поршнем, а в дополнительную полость, которая имеется в головке цилиндра. Такой способ оптимизирует процесс самовоспламенения. К тому же такой тип дизеля работает с меньшим шумом даже на самых высоких оборотах. Именно такие двигатели сегодня устанавливают на легковых автомобилях, кроссоверах и внедорожниках.

В зависимости от конструктивных особенностей дизельный силовой агрегат работает в четырехтактном и двухтактном циклах.

Четырехтактный цикл подразумевает следующие этапы работы силового агрегата:

  • Первый такт – это поворот коленвала на 180 градусов. Благодаря его движению открывается впускающий клапан, в результате чего воздух подается в полость цилиндра. После этого клапан резко закрывается. Одновременно с этим при определенном положении открывается и выхлопной (выпускающий) клапан. Момент одновременного открытия клапанов называют перекрытием.
  • Второй такт — это сжатие воздуха поршнем.
  • Третий такт — начало хода. Коленвал поворачивается на 540 градусов, топливно-воздушная смесь воспламеняется и сгорает при соприкосновении с форсунками. Выделяющаяся при горении энергия поступает в поршень и заставляет его двигаться.
  • Четвертый такт соответствует повороту коленвала до 720 градусов. Поршень поднимается вверх и выбрасывает через выпускной клапан отработавшие продукты горения.

Двухтактный цикл обычно используется при запуске дизельного агрегата. Суть его заключается в том, что такты сжатия воздуха и начало рабочего процесса у него укорочены. При этом поршень выпускает отработавшие газы через специальные впускные окна во время своей работы, а не после того, как опустится вниз. После принятия исходного положения осуществляется продувка поршня, чтобы удалить остаточные явления от горения.

Преимущества и недостатки использования дизельных двигателей

Силовые агрегаты на дизельном топливе характеризуются высокой мощностью и коэффициентом полезного действия. Специалисты ГК Favorit Motors отмечают, что автомобили с дизельными агрегатами с каждым годом становятся все более востребованными в нашей стране.

Во-первых, благодаря особенностям процесса горения топлива и постоянному выхлопу отработавших газов, дизель не предъявляет строгих требований к качеству топлива. Это делает их и более экономичными и доступными в обслуживании. Кроме того, расход топлива у дизельного мотора меньше, чем у бензинового агрегата аналогичного объема.

Во-вторых, самовозгорание топливно-воздушной смеси производится равномерно в момент впрыска. Поэтому дизельные двигательные аппараты могут работать на пониженных оборотах и, несмотря на это, выдавать очень высокий крутящий момент. Такое свойство позволяет сделать транспортное средство с дизельным агрегатом намного легче в управлении, нежели авто с потреблением бензинового топлива.

В-третьих, в использованных газовых выхлопах дизельного мотора содержится гораздо меньше окиси углерода, что делает эксплуатацию таких авто экологичной.

Несмотря на свою надежность и высокий моторесурс, дизельные силовые агрегаты со временем выходят из строя. Самостоятельно проводить ремонтные работы мастера ГК Favorit Motors не рекомендуют, ведь современные «дизели» — это высокотехнологичные установки. И для их ремонта необходимы специальные знания и оборудование.

Специалисты автосервиса Favorit Motors – это квалифицированные мастера, которые прошли стажировку и обучение в учебных центрах заводов-производителей. Они обладают доступом ко всей технологической документации и имеют многолетний опыт ремонта дизельных агрегатов любых модификаций. В нашем техцентре имеется все необходимое оборудование и узкопрофильные инструменты для диагностики и ремонта дизельных моторов. Кроме того, услуги по восстановлению и ремонту «дизелей», оказываемые в ГК Favorit Motors, являются необременительными для кошельков москвичей.

Мастера автосервиса отмечают, что долговечность работы «дизеля» напрямую зависит от того, насколько своевременно и качественно проводится сервисное обслуживание. В техцентре Favorit Motors регламентное ТО выполняется в строгом соответствии с технологическими картами производителя и с использованием только высококачественных сертифицированных запчастей.