Дать угла на машине что значит?

Дать угла на машине что значит?

Определение 1. Угол − это геометрическая фигура,которая состоит из двух лучей, исходящих из одной точки.

Лучи называются сторонами угла, а их общее начало − вершиной угла.

Обозначение угла

На рисунке 1 изображен угол с вершиной O и сторонами m и n. Данный угол обозначают ( small ∠mn ) или ( small ∠O. ) Если на сторонах угла выбрать точки A и B, то угол можно обозачить так: ( small ∠AOB ) или ( small ∠BOA. )

Развернутый угол. Внутренняя и внешняя область угла

Угол называется развернутым, если его стороны находятся на одной прямой. На рисунке 2 изображен развернутый угол с вершиной А и сторонами m и n.

Любой угол разделяет плоскость на две части. Если угол неразвернутый, то меньшая из частей называется внутренней областью, а другая − внешней областью этого угла (Рис.3).

Если угол развернутый, то любую из двух частей, на которые разделяет угол данную плоскось можно считать внутренней областью угла.

Фигуру, состоящую из угла и его внутренней области также называют углом.

На рисунке 4 точки P и Q лежат внутри угла mn (т.е. во внутренней области угла), точки R и S лежат вне угла mn (т.е. во внешней области угла), а точки A и B на сторонах этого угла.

Типы углов

В зависимости от величин, углы бывают следующих типов (Рис.5):

  • Нулевой угол (0°). Стороны угла совпадают. Его внутренняя область пустое множество.
  • Острый угол (больше 0° и меньше 90°)
  • Прямой угол (90°). Стороны прямого угла перпендикулярны друг другу.
  • Тупой угол (больше 90° и меньше 180°).
  • Развернутый угол (180°).
  • Невыпуклый угол (от 0° до 180° включительно).
  • Выпуклый угол (больше 180° и меньше 360°).
  • Польный угол (360°).

Сравнение углов

Углы можно сравнить, то есть определить равны ли они или какой угол меньше а какой больше. Чтобы определить равны ли углы или нет нужно наложить один угол на другой так, чтобы сторона одного угла совместилась со стороной другого угла а две другие оказались по одну сторону от совместившихся сторон. Если две другие стороны также совместились, то углы полностью совместятся и,следовательно они равны. Если же эти стороны не совместяться, то меньшим считается тот угол, который является частью другой.

На рисунках 6a и 6b представлены два угла: 1 и 2. На рисунке 7 угол 2 является частью угла 1, следовательно угол 2 меньше угла 1. Это пишется так: ( small ∠2 lt angle 1. )

Градусная мера угла

Измерение углов основана на сравнении их с углом, принятым за единицу измерения. За единицей измерения углов примнимают градус, которая является ( small frac <1> <180>) частью развернутого угла. Положительное число, показывающая, сколько раз градус и его части помещаются в данном угле называвется градусной мерой угла. Для измерения углов используют транспортир (Рис.8).

Для угла AOB, градусная мера которого равна 120° говорят «угол AOB равен 120° » и пишут: ( small ∠AOB=120 °. ) Очевидно, что градусная мера развернутого угла равна 180°. ( small frac <1> <60>) часть градуса называется минутой и обозначается так: » ‘ «. ( small frac <1> <60>) часть минуты называется секундой и обозначается так: » » «. Если градусная мера угла AOB равна 56 градусов 6 минут и 43 секунды, то пишут: ( small angle AOB=56°6’43». )

Отметим, что равные углы имеют равные градусные меры. Если углы разные, то меньший угол имеет меньшую градусную меру.

Измерение углов

Когда прямые пересекаются, то получается четыре разные области по отношению к точке пересечения.
Эти новые области называют углами.


На картинке видны 4 разных угла, образованных пересечением прямых AB и CD

Обычно углы измеряются в градусах, что обозначается как °. Когда объект совершает полный круг, то есть движется из точки D через B, C, A, а затем обратно к D, то говорят что он повернулся на 360 градусов (360°). Таким образом, градус — это $frac<1><360>$ круга.

Углы больше 360 градусов

Мы говорили о том, что когда объект делает полный круг вокруг точки, то он проходит 360°, однако, когда объект делает более одного круга, то он делает угол более 360 градусов. Это обычное явление в повседневной жизни. Колесо проходит многие круги, когда автомобиль движется, то есть оно образует угол больше 360°.

Для того, чтобы узнать количество циклов (пройденных кругов) при вращении объекта, мы считаем количество раз, которое нужно прибавить 360 к самому себе, чтобы получить число равное или меньшее, чем данный угол. Точно так же мы находим число, которое мы умножаем на 360, чтобы получить число меньшее, но наиболее близкое к данному углу.

Пример 2
1. Найти количество кругов, описанных объектом, образующем угол
a) 380°
b) 770°
c) 1000°
Решение
a) 380 = (1 × 360) + 20
Объект описал один круг и 20°
Так как $20^ = frac<20> <360>= frac<1><18>$ круга
Объект описал $1frac<1><18>$ кругов.

b) 2 × 360 = 720
770 = (2 × 360) + 50
Объект описал два круга и 50°
$50^ = frac<50> <360>= frac<5><36>$ круга
Объект описал $2frac<5><36>$ круга
c)2 × 360 = 720
1000 = (2 × 360) + 280
$280^ = frac<260> <360>= frac<7><9>$ кругов
Объект описал $2frac<7><9>$ кругов

Положительные и отрицательные углы

Когда объект вращается по часовой стрелки, то он образует отрицательный угол вращения, а когда вращается против часовой стрелке — положительный угол. До этого момента мы рассматривали только положительные углы.

В форме диаграммы отрицательный угол может быть изображен так, как это показано ниже.

Рисунок ниже показывает знак угла, который измеряется от общей прямой, 0 оси (оси абсцисс — х оси)

Это означает, что при наличии отрицательного угла, мы можем получить соответствующий ему положительный угол.
Например, нижняя часть вертикальной прямой это 270°. Когда измеряется в негативную сторону, то получим -90°. Мы просто вычитаем 270 из 360. Имея отрицательный угол, мы прибавляем 360, для того чтобы получить соотвествующий положительный угол.
Когда угол равен -360°, это означает, что объект совершил более одного круга по часовой стрелке.

Пример 3
1. Найти соответствующий положительный угол
a) -35°
b) -60°
c) -180°
d) — 670°

2. Найти соответствующий отрицательный угол 80°, 167°, 330°и 1300°.
Решение
1. Для того, чтобы найти соответствующий положительный угол мы прибавляем 360 к значению угла.
a) -35°= 360 + (-35) = 360 — 35 = 325°
b) -60°= 360 + (-60) = 360 — 60 = 300°
c) -180°= 360 + (-180) = 360 — 180 = 180°
d) -670°= 360 + (-670) = -310
Это означает один круг по часовой стрелке (360)
360 + (-310) = 50°
Угол равен 360 + 50 = 410°

2. Для того, чтобы получить соответсвующий отрицательный угол мы вычитаем 360 от значения угла.
80° = 80 — 360 = — 280°
167° = 167 — 360 = -193°
330° = 330 — 360 = -30°
1300° = 1300 — 360 = 940 (пройден один круг)
940 — 360 = 580 (пройден второй круг)
580 — 360 = 220 (пройден третий круг)
220 — 360 = -140°
Угол равен -360 — 360 — 360 — 140 = -1220°
Таким образом 1300° = -1220°

Радиан

Радиан — это угол из центра круга, в который заключена дуга, длина которой равна радиусу данного круга. Это единица измерения угловой величины. Такой угол примерно равен 57,3°.
В большинстве случаев, это обозначается как рад.
Таким образом $1 рад approx 57,3^$

Радиус = r = OA = OB = AB
Угол BOA равен одному радиану

Поскольку длина окружности задается как $2pi r$, то в окружности $2pi$ радиусов, а значит в целом круге $2pi$ радиан.

Читайте также  Разбили окно в машине что делать?

Радианы обычно выражаются через $pi$ во избежание десятичных частей в вычислениях. В большинстве книг, аббревиатура рад (rad) не встречается, но читатель должен знать, что, когда речь идет об угле, то он задан через $pi$, а единицами измерения автоматически становятся радианы.

Пример 4
1. Преобразовать 240°, 45°, 270°, 750° и 390° в радианы через $pi$.
Решение
Умножим углы на $frac<180>$.

2. Преобразовать следующие углы в градусы.
a) $frac<5><4>pi$
b) $3,12pi$
c) 2,4 радиан
Решение
$180^ = pi$
a) $frac<5> <4>pi = frac<5> <4>times 180 = 225^$
b) $3,12pi = 3,12 times 180 = 561,6^$
c) 1 рад = 57,3°
$2,4 = frac<2,4 times 57,3> <1>= 137,52$

Отрицаетльные углы и углы больше, чем $2pi$ радиан

Для того чтобы преобразовать отрицательный угол в положительный, мы складываем его с $2pi$.
Для того чтобы преобразовать положительный угол в отрицательный, мы вычитаем из него $2pi$.

Пример 5
1. Преобразовать $-frac<3><4>pi$ и $-frac<5><7>pi$ в позитивные углы в радианах.

Решение
Прибавляем к углу $2pi$
$-frac<3><4>pi = -frac<3><4>pi + 2pi = frac<5><4>pi = 1frac<1><4>pi$

Когда объект вращается на угол больший, чем $2pi$;, то он делает больше одного круга.
Для того, чтобы определить количество оборотов (кругов или циклов) в таком угле, мы находим такое число, умножая которое на $2pi$, результат равен или меньше, но как можно ближе к данному числу.

Пример 6
1. Найти количество кругов пройденных объектом при данных углах
a) $-10pi$
b) $9pi$
c) $frac<7><2>pi$

Решение
a) $-10pi = 5(-2pi)$;
$-2pi$ подразумевает один цикл в направлении по часовой стрелке, то это означает, что
объект сделал 5 циклов по часовой стрелке.

b) $9pi = 4(2pi) + pi$, $pi =$ пол цикла
объект сделал четыре с половиной цикла против часовой стрелки

c) $frac<7><2>pi=3,5pi=2pi+1,5pi$, $1,5pi$ равно три четверти цикла $(frac<1,5pi><2pi>=frac<3><4>)$
объект прошел один и три четверти цикла против часовой стрелки

Точный угол 90 градусов с помощью рулетки

При отделочных работах и строительстве бывает нужна четкая геометрия: перпендикулярные стены и иные конструкции, требующие прямого угла в 90 градусов. Обыкновенный угольник не может позволить проверить или разметить углы со сторонами в несколько метров. Описываемый же метод превосходно подходит для разметки или проверки любых углов — длинна сторон не ограничена. Основной инструмент для измерений — рулетка.

Мы будем рассматривать точную разметку прямого угла, а также метод проверки уже размеченных углов на стенах и других объектах.

Теорема Пифагора

Теорема основана на утверждении, что у прямоугольного треугольника сумма квадратов длин катетов равна квадрату длины гипотенузы. В виде формулы записывается это так:

Стороны a и b — катеты, между которыми угол равен ровно 90 градусов. Следовательно, сторона c — гипотенуза. Подставляя в эту формулу две известные величины, мы можем вычислить третью, неизвестную. А следовательно можем размечать прямые углы, а также проверять их.

Теорема Пифагора известна еще под названием «египетский треугольник». Это треугольник со сторонами 3, 4 и 5, причем совершенно не важно, в каких единицах длинны. Между сторонами 3 и 4 — ровно девяносто градусов. Проверим данное утверждение вышеприведенной формулой: a²+b²=c² = (3×3)+(4×4) = 9+16 = (5×5) = 25 — все сходится!

А теперь применим теорему на практике.

Проверка прямого угла

Начнем с самого простого — проверки прямого угла с помощью теоремы Пифагора. Самым частым примером в отделке и строительстве является проверка перпендикулярности стен. Перпендикулярные стены — это стены, расположенные друг к другу под прямым углом 90°.

Итак, берем любой проверяемый внутренний угол. На стенах (на одной высоте) или на полу отмечаем на обоих стенах отрезки произвольных длин. Длинна этих отрезков произвольная, по возможности нужно отмечать как можно больше, но чтобы между отметками на стенах удобно было мерить диагональ. Например, мы отметили 2,5 метра (или 250 см.) на одной стене и 3 метра (или 300 см.) на другой. Теперь длину отрезка каждой стены возводим в квадрат (умножаем саму на себя) и получившиеся произведения складываем. Выглядит это так: (2,5×2,5)+(3×3)=15,25 — это диагональ в квадрате. Теперь нужно извлечь из этого числа квадратный корень √15,25≈3,90 — 3,9 метра должна составлять диагональ между нашими отметками. Если измерение рулеткой показывает другую длину диагонали — проверяемый угол развернут и имеет отклонение от 90°.

Калькулятор расчета диагонали прямого угла

Диагональ c

Извлечение квадратного корня никогда меня не привлекало — простому человеку не обойтись без калькулятора, к тому же, не на всех мобильных устройствах калькуляторы умеют извлекать его. Поэтому можно пользоваться упрощенным методом. Нужно лишь запомнить: у прямого угла со сторонами ровно 100 сантиметров, диагональ равна 141,4 см. Таким образом, у прямого угла со сторонами 2 м. — диагональ равна 282,8 см. То есть на каждый метр плоскости приходится 141,4 см. У этого метода один недостаток: от измеряемого угла нужно откладывать одинаковые расстояния на обеих стенах и отрезки эти должны быть кратны метру. Не буду утверждать, но по моей скромной практике — это гораздо удобнее. Хотя не стоит забывать о первоначальном способе совсем — в некоторых случаях он очень актуален.

Сразу же возникает вопрос: какое отклонение от вычисленной длинны диагонали считать нормой (погрешностью), а какое нет? Если проверяемый угол с отмеченными сторонами по 1 м. будет 89°, то диагональ уменьшится до 140 см. Из понимания этой зависимости можно сделать объективный вывод, что погрешность диагонали 141,4 см. в несколько миллиметров не даст отклонения в один целый градус.

Как проверить внешний угол? Проверка внешнего угла по сути не отличается, нужно лишь продлить линии каждой стены на полу (или земле, при помощи шнура) и получившийся внутренний угол измерить обычным способом.

Как разметить прямой угол рулеткой

Разметка может основываться как на общей теореме Пифагора, так и на принципе «египетского треугольника». Однако это только в теории линии просто чертятся на бумаге, «ловить» же все выбранные размеры растянутыми шнурами или линиями на полу — задача посложнее.

Поэтому я предлагаю упрощенный способ, основанный на диагонали 141,4 см. у треугольника со сторонами 100 см. Вся последовательность разметки изображена на картинках ниже. Важно не забывать: диагональ 141,4 см. нужно умножать на количество метров в отрезке А-Б. Отрезки А-Б и А-В должны быть равны и соответствовать целому числу в метрах. Картинки увеличиваются по клику!

Как разметить острый угол

Гораздо реже возникает надобность в создании острых углов, в частности 45°. Для формирования подобных фигур формулы более сложные, однако это не самое проблематичное. Гораздо сложнее свести все линии, начерченные или натянутые шнурами — дело это непростое. Поэтому я предлагаю использовать упрощенный метод. Сначала размечается прямой угол 90°, а затем диагональ 141,4 делится на нужное количество равных частей. Например, чтобы получить 45°, диагональ нужно поделить пополам и от точки А провести линию через место деления. Таким образом мы получим два угла по 45 градусов. Если поделить диагональ на 3 части, то получится три угла по 30 градусов. Думаю алгоритм вам понятен.

Собственно я рассказал все, что мог рассказать, надеюсь все изложил понятным языком и у вас больше не возникнет вопросов как размечать и проверять прямые углы. Стоит добавить, что уметь делать это должен любой отделочник или строитель, ведь полагаться на строительный угольник небольшого размера — непрофессионально.

Читайте также  Как защитить машину от угона своими руками?

Как определить градусную меру угла

  • Градусная мера угла — формулировка
    • Что отражает величина
    • Обозначение
  • Мера прямого угла
  • Мера развернутого угла
  • Мера тупого угла
  • Мера острого угла
  • Как найти градусную меру
    • Описание
  • Свойства углов
    • Мера больше нуля
    • Мера соответствует сумме градусных мер углов, разбиваемых лучом
    • Отложение угла от луча
  • Примеры нахождения меры угла

Градусная мера угла — формулировка

Градусная мера, в первую очередь, делает возможным измерение углов в геометрии.

Это число – показатель того, сколько градусов, минут и секунд содержится в данном угле.

Оно всегда больше нуля.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Что отражает величина

Количество градусов, минут и секунд, которые находятся между сторонами угла.

Обозначение

С помощью символов градусов ((º)) , минут ((′)) и секунд ((″)) .

В одном градусе содержится шестьдесят минут, в одной минуте — шестьдесят секунд.

(125º) (22′) (15″) (сто двадцать пять градусов, двадцать две минуты, пятнадцать секунд).

Если настолько точно, как показано выше определить меру невозможно, пользуются дробной мерой градуса. Например, (123,5º) .

Обозначение на чертеже:

Мера прямого угла

Прямой всегда равен (90º) . В него входит (5400′) или (324000″) . Является половиной развернутого.

Мера развернутого угла

Развернутый всегда равен (180º) . Представляет собой прямую.

Мера тупого угла

Тупой всегда больше (90º) , но меньше (180º) .

Мера острого угла

Острый всегда меньше (90º) .

Выглядит как нечто с острым концом, способным « уколоть » .

Как найти градусную меру

С помощью специального измерительного инструмента – транспортира. Он может быть сделан из разного материала (пластик, дерево, тонкий металл) и выглядеть по-разному.

Разница только во внешнем виде. Устроены инструменты одинаково. Состоят из:

  • основания (часто со шкалой-линейкой),
  • дуги (полукруга) с двумя шкалами с градусной сеткой.

Круглый транспортир имеет отличие в строении сетки: на нем указан полный круг в (360°) .

Описание

Как производить измерения:

  • найти в середине транспортира специальную метку (это может быть отверстиештрихточка и т.п.), она проходит через «0º» на сетке дуги;
  • приложить инструмент этой отметкой к вершине угла, т.е. совместить «0º» с точкой вершины;
  • повернуть так, чтобы основание инструмента совпадало с одной из сторон угла;
  • следить, чтобы при повороте транспортира отметка «0º» не сходила с вершины;
  • проводим мысленно дугу справа налево (снизу, от основания, вверх по дуге) до второй стороны угла;
  • вторая сторона угла покажет на отметку с цифрой на шкале инструмента;
  • это и будет градусная мера данного угла.

Если после того, как вы приложили центральную метку транспортира к вершине угла, одна из его сторон прошла через отметку «0º» на внешней шкале полукруга, то дальше измерение проводите только по внешней шкале. Если же сторона прошла через внутренний «0º», то пользуйтесь внутренней шкалой, на внешнюю уже смотреть не нужно.

Чтобы не сделать ошибку при измерении, воспользуйтесь образцом: https://yadi.sk/i/LVbtcivDBPzimw

Свойства углов

Градусная мера меньшего всегда меньше.

Если углы равны, то их градусные меры тоже равны (и наоборот: равные меры говорят о равенстве углов).

Ниже представлены основные свойства.

Мера больше нуля

Градусная мера любого угла всегда больше (0º) .

Мера соответствует сумме градусных мер углов, разбиваемых лучом

Если угол разделен лучом на несколько углов, то его градусная мера будет равна сумме всех этих углов.

Отложение угла от луча

От любого луча можно построить только один угол с градусной мерой меньше (180º) .

Примеры нахождения меры угла

Луч ОС лежит внутри (∠АОВ) . При этом (∠АОС = 36º) , а (∠ВОС = 18º) . Чему равен (∠АОВ) ?

  1. Луч делит исходный угол на два.
  2. Значит, чтобы найти (∠АОВ) , нужно сложить меры углов, полученных при проведении луча.
  3. (36º+18º=54º.)

Луч (ОК) делит (∠АОВ) на два угла. Один из них больше другого в два раза и равен (60º) . Чему равен (∠АОВ) ?

Здесь, как и в задаче выше, решение будет простое. Специальная формула не требуется.

  1. (∠AOK = 60º,)
  2. Известно также, что второй — вдвое меньше него, значит, (∠KOB = 60º:2 = 30º,)
  3. Мы знаем что (∠АОВ = ∠АОК+∠КОВ,)
  4. Нам остается только выполнить сложение: ( 60º+30°= 90º) . Это и есть величина (∠AOB.)

Дать угла на машине что значит?

ТЕРПЕНЬЕ И ТРУД ВСЁ ПЕРЕТРУТ! 🙂

Содержание сайта

Раздел 1.
Про ЕГЭ.
  • Как проходит ЕГЭ?
    >
    • Перед экзаменом.
    • Во время экзамена.
    • По окончании экзамена.

  • Что будет на ЕГЭ по математике?
    >
    • Базовый и профильный уровни.
    • Как работать на ЕГЭ?

  • Система оценок в ЕГЭ

  • Как готовиться к ЕГЭ?

Раздел 2.
ЕГЭ на 3.
  • Как учить математику?

  • Дроби
    >
    • Виды дробей. Преобразования.
    • Сложение и вычитание дробей.
    • Умножение и деление дробей.

  • Уравнения
    >
    • Как решать уравнения? Тождественные преобразования.
    • Линейные уравнения.
    • Квадратные уравнения. Дискриминант.
    • Дробные уравнения. ОДЗ.

  • Решение задач по математике
    >
    • Как решать задачи по математике?
    • Что такое математическая модель? Составление математической модели.
    • Задачи на движение.
    • Задачи на работу.

  • Проценты. Задачи на проценты

  • Числовые и алгебраические выражения. Преобразования выражений
    >
    • Числовые и алгебраические выражения. Тождественные преобразования.
    • Разложение на множители.
    • Формулы сокращённого умножения.

  • Квадратные корни
    >
    • Что такое квадратный корень?
    • Свойства (формулы) корней. Как умножать корни?
    • Как делить корни? Корень из квадрата. Корень в квадрате.

  • Арифметическая прогрессия
    >
    • Понятие арифметической прогрессии. Разность прогрессии.
    • Формула n-го члена арифметической прогрессии.
    • Сумма арифметической прогрессии.

  • Логарифмы. Основы

Раздел 3.
ЕГЭ на 4.

  • Тригонометрия. Основные понятия
    >
    • Что такое синус и косинус? Что такое тангенс и котангенс?
    • Тригонометрический круг. Единичная окружность. Числовая окружность.
    • Отсчёт углов на тригонометрическом круге.
    • Градусная мера угла. Радианная мера угла. Перевод градусов в радианы и обратно.
    • Таблица синусов. Таблица косинусов. Таблица тангенсов и котангенсов.
    • Как не забыть таблицу синусов и косинусов.
    • Что такое арксинус, арккосинус? Что такое арктангенс, арккотангенс?

  • Тригонометрия. Решение уравнений
    >
    • Решение тригонометрических уравнений с помощью круга.
    • Решение тригонометрических уравнений с помощью формул.

  • Неравенства
    >
    • Линейные неравенства. Решение, примеры.
    • Квадратные неравенства. Решение, примеры.

  • Показательные уравнения

  • Логарифмические уравнения
    >
    • Простейшие логарифмические уравнения
    • ОДЗ в логарифмических уравнениях

Отсчёт углов на тригонометрическом круге.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

В предыдущем уроке мы освоили базовые понятия. Это понятия тригонометрическая окружность, угол, синус и косинус этого угла. Освоили, что называется, «на пальцах». Главное сделано. Но чтобы толково использовать эти понятия на практике, надо чётко усвоить два момента.

1. Как считаются углы?
2. В чём они считаются?

Первый вопрос прост, но и здесь есть место ошибкам. А второй. Если опросить 10 человек на тему: «Что такое «Пи» в тригонометрических функциях?», лучший ответ будет такой:»Пи — это 180 градусов!» Что, по сути, верно, но уточнять детали лучше уже не надо. Чтобы не испортить впечатление.)

Формальное, неосознанное использование понятий очень часто приводит. в лужу. При нестандартных вопросах — почти всегда. Но мы в лужу не собираемся, правда? Сыро там. Работаем.

Положительные и отрицательные углы в тригонометрии.

В этом небольшом уроке разберём первый вопрос.

Итак, как считать углы на тригонометрическом круге?
Смотрим на рисунок.

Он почти такой, как в предыдущем уроке. Есть оси, окружность, угол, всё чин-чинарём. Добавлены номера четвертей (в уголках большого квадрата) — от первой, до четвёртой. А то вдруг кто не знает? Как видите, четверти (их ещё называют красивым словом «квадранты») нумеруются против хода часовой стрелки. Добавлены значения угла на осях. Всё понятно, никаких заморочек.

Читайте также  Где педаль тормоза в машине автомат?

И добавлена зелёная стрелка. С плюсом. Что она означает? Напомню, что неподвижная сторона угла всегда прибита к положительной полуоси ОХ. Так вот, если подвижную сторону угла мы будем крутить по стрелке с плюсом, т.е. по возрастанию номеров четвертей, угол будет считаться положительным. Для примера на картинке показан положительный угол +60°.

Если будем откладывать углы в обратную сторону, по ходу часовой стрелки, угол будет считаться отрицательным. Наведите курсор на картинку (или коснитесь картинки на планшете), увидите синюю стрелку с минусом. Это — направление отрицательного отсчёта углов. Для примера показан отрицательный угол (- 60°). А ещё вы увидите, как поменялись циферки на осях. Я их тоже перевёл в отрицательные углы. Нумерация квадрантов не меняется.

Вот тут, обычно, начинаются первые непонятки. Как так!? А если отрицательный угол на круге совпадёт с положительным!? Да и вообще, получается что, одно и то же положение подвижной стороны (или точки на числовой окружности) можно обозвать как отрицательным углом, так и положительным!?

Да. Именно так. Скажем, положительный угол 90 градусов занимает на круге точно такое же положение, что и отрицательный угол в минус 270 градусов. Положительный угол, к примеру, +110° градусов занимает точно такое же положение, что и отрицательный угол -250°.

Зачем?! Как теперь считать углы, если можно и так и этак!? Как правильно!?

Не вопрос. Всяко правильно.) Выбор положительного или отрицательного исчисления угла зависит от условия задания. Если в условии ничего не сказано открытым текстом про знак угла, (типа «определить наименьший положительный угол» и т.д.), то работаем с удобными нам величинами.

Исключением (а как без них?!) являются тригонометрические неравенства, но там мы эту фишку освоим.

А теперь вопрос вам. Как я узнал, что положение угла 110° совпадает с положением угла -250°?
Намекну, что это связано с полным оборотом. В 360°. Непонятно? Тогда рисуем круг. Сами рисуем, на бумаге. Отмечаем угол примерно 110°. И считаем, сколько остается до полного оборота. Останется как раз 250°.

Уловили? А теперь — внимание! Если углы 110° и -250° занимают на круге одно и то же положение, то что? Да то, что у углов 110° и -250° совершенно одинаковые синус, косинус, тангенс и котангенс!
Т.е. sin110° = sin(-250°), ctg110° = ctg(-250°) и так далее. Вот это уже действительно важно! И само по себе — есть масса заданий, где надо упростить выражения, и как база для последующего освоения формул приведения и прочих премудростей тригонометрии.

Понятное дело, 110° и -250° я взял наобум, чисто для примера. Всё эти равенства работают для любых углов, занимающих одно положение на круге. 60° и -300°, -75° и 285°, ну и так далее. Отмечу сразу, что углы в этих парочках — разные. А вот тригонометрические функции у них — одинаковые.

Думаю, что такое отрицательные углы вы поняли. Это совсем просто. Против хода часовой стрелки — положительный отсчёт. По ходу — отрицательный. Считать угол положительным, или отрицательным зависит от нас. От нашего желания. Ну, и ещё от задания, конечно. Надеюсь, вы поняли и как переходить в тригонометрических функциях от отрицательных углов к положительным и обратно. Нарисовать круг, примерный угол, да посмотреть, сколько недостаёт до полного оборота, т.е. до 360°.

Углы больше 360°.

Займемся углами которые больше 360°. А такие бывают? Бывают, конечно. Как их нарисовать на круге? Да не проблема! Допустим, нам надо понять, в какую четверть попадёт угол в 1000°? Легко! Делаем один полный оборот против хода часовой стрелки (угол-то нам дали положительный!). Отмотали 360°. Ну и мотаем дальше! Ещё оборот — уже получилось 720°. Сколько осталось? 280°. На полный оборот не хватает. Но угол больше 270° — а это граница между третьей и четвёртой четвертью. Стало быть наш угол в 1000° попадает в четвёртую четверть. Всё.

Как видите, это совсем просто. Ещё раз напомню, что угол 1000° и угол 280°, который мы получили путём отбрасывания «лишних» полных оборотов — это, строго говоря, разные углы. Но тригонометрические функции у этих углов совершенно одинаковые! Т.е. sin1000° = sin280°, cos1000° = cos280° и т.д. Если бы я был синусом, я бы не заметил разницы между этими двумя углами.

Зачем всё это нужно? Зачем нам переводить углы из одного в другой? Да всё за тем же.) С целью упрощения выражений. Упрощение выражений, собственно, главная задача школьной математики. Ну и, попутно, голова тренируется.)

Ну что, потренируемся?)

Отвечаем на вопросы. Сначала простые.

1. В какую четверть попадает угол -325° ?

2. В какую четверть попадает угол 3000° ?

3. В какую четверть попадает угол -3000° ?

Есть проблемы? Или неуверенность? Идём в Раздел 555, Практическая работа с тригонометрическим кругом. Там, в первом уроке этой самой «Практической работы. » всё подробненько. В таких вопросах неуверенности быть не должно!

Всё нормально? Едем дальше:

4. Какой знак имеет sin555° ?

5. Какой знак имеет tg555° ?

Определили? Отлично! Сомневаетесь? Надо в Раздел 555. Кстати, там научитесь рисовать тангенс и котангенс на тригонометрическом круге. Очень полезная штучка.

А теперь вопросы помудрёнее.

6. Привести выражение sin777° к синусу наименьшего положительного угла.

7. Привести выражение cos777° к косинусу наибольшего отрицательного угла.

8. Привести выражение cos(-777°) к косинусу наименьшего положительного угла.

9. Привести выражение sin777° к синусу наибольшего отрицательного угла.

Что, вопросы 6-9 озадачили? Привыкайте, на ЕГЭ и не такие формулировочки встречаются. Так и быть, переведу. Только для вас!

Слова «привести выражение к. » означают преобразовать выражение так, чтобы его значение не изменилось, а внешний вид поменялся в соответствии с заданием. Так, в задании 6 и 9 мы должны получить синус, внутри которого стоит наменьший положительный угол. Всё остальное — не имеет значения.

Ответы выдам по порядку (в нарушение наших правил). А что делать, знака всего два, а четверти всего четыре. Не разбежишься в вариантах.

Предполагаю, что ответы на вопросы 6 -9 кое-кого смутили. Особенно -sin(-57°), правда?) Действительно, в элементарных правилах отсчёта углов есть место для ошибок. Именно поэтому пришлось сделать урок: «Как определять знаки функций и приводить углы на тригонометрическом круге?» В Разделе 555. Там задания 4 — 9 разобраны. Хорошо разобраны, со всеми подводными камнями. А они тут есть.)

В следующем уроке мы разберёмся с загадочными радианами и числом «Пи». Научимся легко и правильно переводить градусы в радианы и обратно. И с удивлением обнаружим, что этой элементарной информации на сайте уже хватает, чтобы решать некоторые нестандартные задачки по тригонометрии!

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

А вот здесь можно познакомиться с функциями и производными.